skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sandwich construction solar structural facets

Conference ·
OSTI ID:20026758

Silver/glass mirrors have excellent optical properties but need a method of support in order to be used in concentrating solar thermal systems. In collaboration with the Cummins dish/Stirling development program, the authors started investigating sandwich construction as a way to integrate silver/glass mirrors into solar optical elements. In sandwich construction, membranes such as sheet metal or plastic are bonded to the front and back of a core (like a sandwich). For solar optical elements, a glass mirror is bonded to one of the membranes. This type of construction has the advantages of a high strength-to-weight ratio, and reasonable material and manufacturing cost. The inherent stiffness of sandwich construction mirror panels also facilitates large panels. This can have cost advantages for both the amount of hardware required as well as reduced installation and alignment costs. In addition, by incorporating the panels into the support structure reductions in the amount of structural support required are potentially possible. The authors have investigated sandwich construction panels that employ cores of polystyrene, polyvinyl chloride (PVC) and polyurethane foams as well as conventional aluminum and cardboard honeycombs. The authors investigations have involved fabricating 0.5 x 0.6-m (20 x 24-inch) spherical-contour panels and testing their optical properties and environmental durability. The authors have also performed preliminary cost and performance studies. Evaluations included optical testing with the SunLab 2f and VSHOT tools both before and after exposures to environmental chamber testing. The results showed that sandwich mirror panels are potentially very accurate. However, long-term degradation due to creep was evident in all of the foam core facets. The aluminum honeycomb core facets were accurate and durable. In this paper, the design principles that guided the investigations, estimates of cost, and the results of the experimental investigations are presented.

Research Organization:
Sandia National Labs., Albuquerque, NM (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
20026758
Resource Relation:
Conference: Renewable and advanced energy systems for the 21st Century, Maui, HI (US), 04/11/1999--04/15/1999; Other Information: 1 CD-ROM. Operating system required: Windows i386(tm), i486(tm), Pentium (R) or Pentium Pro, MS Windows 3.1, 95, or NT 3.51, 8 MB RAM; MacIntosh and Power MacIntosh with a 68020 or greater processor, System software version 7.1, 3.5 MB RAM (5 MB for PowerMac) 6 MB available hard-disk space; UNIX; PBD: 1999; Related Information: In: Renewable and advanced energy systems for the 21st century, RAES'99 proceedings, by Hogan, R.; Kim, Y.; Kleis, S.; O'Neal, D.; Tanaka, T. [eds.], [1125] pages.
Country of Publication:
United States
Language:
English