skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Flame front surface characteristics in turbulent premixed propane/air combustion

Abstract

The characteristics of the flame front surfaces in turbulent premixed propane/air flames were investigated. Flame front images were obtained using laser-induced fluorescence (LIF) of OH and Mie scattering on two Bunsen-type burners of 11.2-mm and 22.4-mm diameters. Nondimensional turbulence intensity, u{prime}/S{sub L}, was varied from 0.9 to 15, and the Reynolds number, based on the integral length scale, varied from 40 to 467. Approximately 100 images were recorded for each experimental condition. Fractal parameters (fractal dimension, inner and outer cutoffs) and corresponding standard deviations were determined by analysis of the flame front images using the caliper technique. The fractal dimensions derived from OH and Mie scattering images are almost identical. However, inner and outer cutoffs from OH images are consistently higher than those obtained from Mie scattering. The self-similar region of the flame front wrinkling is about a decade for all flames studied. In the nondimensional turbulence intensity range from 1 to 15, it was found that the mean fractal dimension is about 2.2 and it does not show any dependence on turbulence intensity. This contradicts the findings of the previous studies that showed that the fractal dimension asymptotically reaches to 2.35--2.37 when the nondimensional turbulence intensity u{prime}/S{sub L} exceedsmore » 3. It is shown that the reason for this discrepancy is the image analysis method used in the previous studies. Examples are given to show the inadequacy of the circle method used in previous studies for extraction of fractal parameters from flame front images. The fractal parameters obtained so far, in this and previous studies, are not capable of correctly predicting the turbulent burning velocity using the available fractal area closure model.« less

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
National Research Council of Canada, Ottawa, Ontario (CA)
OSTI Identifier:
20019019
Resource Type:
Journal Article
Resource Relation:
Journal Name: Combustion and Flame; Journal Volume: 120; Journal Issue: 4; Other Information: PBD: Mar 2000
Country of Publication:
United States
Language:
English
Subject:
03 NATURAL GAS; PROPANE; COMBUSTION KINETICS; FLAMES; SURFACE PROPERTIES; MORPHOLOGY; TURBULENT FLOW

Citation Formats

Guelder, O.L., Smallwood, G.J., Wong, R., Snelling, D.R., Smith, R., Deschamps, B.M., and Sautet, J.C. Flame front surface characteristics in turbulent premixed propane/air combustion. United States: N. p., 2000. Web. doi:10.1016/S0010-2180(99)00099-1.
Guelder, O.L., Smallwood, G.J., Wong, R., Snelling, D.R., Smith, R., Deschamps, B.M., & Sautet, J.C. Flame front surface characteristics in turbulent premixed propane/air combustion. United States. doi:10.1016/S0010-2180(99)00099-1.
Guelder, O.L., Smallwood, G.J., Wong, R., Snelling, D.R., Smith, R., Deschamps, B.M., and Sautet, J.C. Wed . "Flame front surface characteristics in turbulent premixed propane/air combustion". United States. doi:10.1016/S0010-2180(99)00099-1.
@article{osti_20019019,
title = {Flame front surface characteristics in turbulent premixed propane/air combustion},
author = {Guelder, O.L. and Smallwood, G.J. and Wong, R. and Snelling, D.R. and Smith, R. and Deschamps, B.M. and Sautet, J.C.},
abstractNote = {The characteristics of the flame front surfaces in turbulent premixed propane/air flames were investigated. Flame front images were obtained using laser-induced fluorescence (LIF) of OH and Mie scattering on two Bunsen-type burners of 11.2-mm and 22.4-mm diameters. Nondimensional turbulence intensity, u{prime}/S{sub L}, was varied from 0.9 to 15, and the Reynolds number, based on the integral length scale, varied from 40 to 467. Approximately 100 images were recorded for each experimental condition. Fractal parameters (fractal dimension, inner and outer cutoffs) and corresponding standard deviations were determined by analysis of the flame front images using the caliper technique. The fractal dimensions derived from OH and Mie scattering images are almost identical. However, inner and outer cutoffs from OH images are consistently higher than those obtained from Mie scattering. The self-similar region of the flame front wrinkling is about a decade for all flames studied. In the nondimensional turbulence intensity range from 1 to 15, it was found that the mean fractal dimension is about 2.2 and it does not show any dependence on turbulence intensity. This contradicts the findings of the previous studies that showed that the fractal dimension asymptotically reaches to 2.35--2.37 when the nondimensional turbulence intensity u{prime}/S{sub L} exceeds 3. It is shown that the reason for this discrepancy is the image analysis method used in the previous studies. Examples are given to show the inadequacy of the circle method used in previous studies for extraction of fractal parameters from flame front images. The fractal parameters obtained so far, in this and previous studies, are not capable of correctly predicting the turbulent burning velocity using the available fractal area closure model.},
doi = {10.1016/S0010-2180(99)00099-1},
journal = {Combustion and Flame},
number = 4,
volume = 120,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2000},
month = {Wed Mar 01 00:00:00 EST 2000}
}
  • A detailed experimental investigation of the application of fractal geometry concepts in determining the turbulent burning velocity in the wrinkled flame regime of turbulent premixed combustion was conducted. The fractal dimension and cutoff scales were determined for six different turbulent flames in the wrinkled flame regime, where the turbulence intensity, turbulent length scale, and equivalence ratio were varied. Unlike previous reports, it has proved possible to obtain the fractal dimension and inner and outer cutoffs from individual flame images. From this individual data, the pdf distributions of all three fractal parameters, along with the distribution of the predicted increase inmore » surface area, may be determined. The analysis of over 300 flame images for each flame condition provided a sufficient sample size to accurately define the pdf distributions and their means. However, the predicted S{sub T}/S{sub L}, calculated using fractal parameters, was significantly below the measured values. For conical flames, a geometrical modification factor was employed to predict S{sub T}/S{sub L}, however, this did little to improve the predictions. There appeared to be no dependence of the predicted S{sub T}/S{sub L} on the approach flow turbulence. The cutoffs did not seem to vary significantly with any of the length scales in the approach flow turbulence, although the fractal dimension did appear to have a weak dependence on u{prime}/S{sub L} and Re{sub {lambda}}. The probable reasons that fractal geometry does not correctly predict S{sub T}/S{sub L} are that S{sub T}/S{sub L} = A{sub w}/A{sub 0} does not hold in wrinkled turbulent premixed flames, that the flame front surface cannot be described by a single scaling exponent, or that these are not wrinkled flames. S{sub T} = turbulent burning velocity, S{sub L} = laminar burning velocity, A{sub w} = wrinkled flame surface area, and A{sub 0} = flow cross section area.« less
  • No abstract prepared.
  • Direct numerical simulations (DNS) are conducted in 3D to investigate the evolution of flame surface density (FSD) in turbulent premixed combustion. A parametric study is performed with respect to turbulent intensity and Lewis number to investigate all component terms in the FSD transport equation. A higher turbulent intensity leads to a higher turbulent burning velocity due to increased flame area, while the mean consumption speed remains close to the laminar flame speed. A lower Lewis number leads to a higher turbulent burning velocity, with increases in both total flame area and mean consumption speed. There are two source terms tomore » govern FSD: tangential strain and propagation term, given as a product of displacement speed and curvature. The mean strain rate varies linearly with the turbulent intensity, but shows no noticeable dependence on the Lewis number. The correlation between curvature and displacement speed does not depend on the turbulent intensity, but shows significant influence of the Lewis number. The propagation term decreases with increasing turbulent intensity to become a larger negative sink in the rear of flame brush with flame elements of smaller radii of curvature and higher displacement speeds. A lower Lewis number leads to a larger positive propagation term in the front due to an increased displacement speed to produce more flame area through diffusive thermal instability. (author)« less
  • This short paper describes the application of the flamelet modelling approach to the prediction of the species concentration field in a turbulent propane-air flame. The structure of the laminar flamelet, the microscopic element in the model, is computed using a semi-global expression for fuel disappearance in conjunction with an established reaction scheme for the oxidation of CO and H/sub 2/. Detailed predictions for a turbulent jet-flame are compared with available experimental data. The significant measure of non-equilibrium which the flamelet introduces leads to substantial improvements in the prediction of CO, H/sub 2/, and C/sub 3/H/sub 8/ mass fractions in comparisonmore » with the simplest alternative model, that of full chemical equilibrium.« less
  • The response of bluff-body stabilized conical V-shaped premixed flames to periodic upstream velocity oscillations was characterized as a function of oscillation frequency, mean flow velocity, and equivalence ratio. The flame heat release response to the imposed velocity oscillations was determined from the CH* chemiluminescence captured by two photomultiplier (PMT) detectors at a wavelength of 430 nm. One of the PMTs viewed flame radiation in a 10-mm horizontal slice, 50 mm above the bluff-body. The second PMT observed the overall flame radiation. The flame transfer function characteristics were determined from the spectral analysis of the velocity and PMT signals. It wasmore » found that the flame heat release amplitude response is confined to low-frequency excitation below a Strouhal number of 4. The phase relationship of the transfer function for these turbulent flames was evaluated using the signal from the spatially masked PMT. The transfer function estimate based on these data exhibits second-order characteristics with a phase lag between the velocity and heat release signals. The localized heat-release response contains frequencies that are multiples of the excitation frequency, suggesting splitting and tilting of flame structures as well as some nonlinear effects. Increase of flame equivalence ratio from lean toward stoichiometric resulted in slight amplification of the high-frequency response. (author)« less