skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CASSCF and CASPT2 ab initio electronic structure calculations find singlet methylnitrene is an energy minimum

Journal Article · · Journal of the American Chemical Society
DOI:https://doi.org/10.1021/ja9907257· OSTI ID:20017359

(12/11)CASSCF and (12/11)CASPT2 ab initio electronic structure calculations with both the cc-pVDZ and cc-pVTZ basis sets find that there is a barrier to the very exothermic hydrogen shift that converts singlet methylnitrene, CH{sub 3}N, to methyleneimine, H{sub 2}C{double{underscore}bond}NH. These two energy minima are connected by a transition structure of C{sub s} symmetry, which is computed to lie 3.8 kcal/mol above the reactant at the (12/11)CASPT2/cc-pVTZ//(12/11)CASSCF/cc-pVTZ level of theory. The (12/11)CASSCF/cc-pVTZ value for the lowest frequency vibration in the transition structure is 854 cm{sup {minus}1}, and CASPT2 calculations concur that this a{double{underscore}prime} vibration does indeed have a positive force constant. Thus, there is no evidence that this geometry is actually a mountain top, rather than a transition structure, on the global potential energy surface or that a C{sub 1} pathway of lower energy connects the reactant to the product. Therefore, computational results indicate that the bands seen for singlet methylnitrene in the negative ion photoelectron spectrum of CH{sub 3}N{sup {minus}} are due to singlet methylnitrene being an energy minimum, rather than a transition state. These results also lead to the prediction that, at least in principle, singlet methylnitrene should be an observable intermediate in the formation of methyleneimine.

Research Organization:
California State Univ., Bakersfield, CA (US)
Sponsoring Organization:
National Science Foundation (NSF); USDOE
DOE Contract Number:
FG02-87ER13695
OSTI ID:
20017359
Journal Information:
Journal of the American Chemical Society, Vol. 122, Issue 6; Other Information: PBD: 16 Feb 2000; ISSN 0002-7863
Country of Publication:
United States
Language:
English