skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Accelerating atomistic simulations of defect dynamics: Hyperdynamics, parallel replica dynamics, and temperature-accelerated dynamics

Conference ·
OSTI ID:20015013

Obtaining a good atomistic description of diffusion dynamics in materials remains a daunting task due to the time-scale limitations of the molecular dynamics method. The authors discuss new methods, derived from transition state theory, for accelerating molecular dynamics simulations of these infrequent-event processes. Two of these methods (hyperdynamics and parallel replica dynamics) have been presented previously, and are briefly reviewed here. The third, temperature-accelerated dynamics (TAD), is presented in detail. In TAD, the system temperature is raised to stimulate more rapid escape out of each potential basin, but attempted transitions are filtered to allow only those that would have occurred at the normal temperature. The characteristics of the methods are compared.

Research Organization:
Los Alamos National Lab., NM (US)
Sponsoring Organization:
USDOE
OSTI ID:
20015013
Resource Relation:
Conference: Multiscale Modeling of Materials, Boston, MA (US), 11/30/1998--12/03/1998; Other Information: Single article reprints are available through University Microfilms Inc., 300 North Zeeb Rd., Ann Arbor, Michigan 48106 (US); PBD: 1999; Related Information: In: Multiscale modeling of materials. Materials Research Society symposium proceedings: Volume 538, by Bulatov, V.V.; Diaz de la Rubia, T.; Phillips, R.; Kaxiras, E.; Ghoniem, N. [eds.], 607 pages.
Country of Publication:
United States
Language:
English