skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Detection of temperature and equivalence ratio in turbulent premixed flames using chemiluminescence

Conference ·
OSTI ID:20013562

A non-intrusive, fast-response method for the determination of temperature and equivalence ratio has been developed for laminar and turbulent premixed methane/air flames. This method utilizes chemiluminescent flame emissions to make correlations with flame temperature and equivalence ratio. Emissions from two radical groups were used for the correlations: an OH system at 309 nm and a CH system at 431 nm. the experimental apparatus consisted of a laminar or turbulent premixed burner, an optical system (lenses, monochromator, and photomultiplier tube), and a data collection system (digital oscilloscope and computer). An optical system using fiber optics and band pass interference filters was also investigated. The spectra of laminar and turbulent, premixed methane flames of known stoichiometry were recorded and a high temperature Pt-Pt10%Rh thermocouple was used to establish flame temperature. The ratio of signal width to signal height of the OH spectra was used to correlate flame temperature. The ratio of OH to CH signal heights was used to correlate equivalence ratio. Similar correlations were found for both temperature and equivalence ratio when the turbulent and laminar correlations were compared. The effect of increasing turbulence was investigated and found to have little or not effect on the correlations over the Reynolds number range of 3,000 to 7,000.

Research Organization:
Virginia Polytechnic Inst. and State Univ., Blacksburg (US)
OSTI ID:
20013562
Resource Relation:
Conference: 1998 International Joint Power Generation Conference, Baltimore, MD (US), 08/23/1998--08/26/1998; Other Information: PBD: 1998; Related Information: In: Proceedings of the 1998 international joint power generation conference (FACT-Vol.22). Volume 1: Fuels and combustion technologies; Gas turbines; Environmental engineering; Nuclear engineering, by Gupta, A.; Natole, R.; Sanyal, A.; Veilleux, J. [eds.], 921 pages.
Country of Publication:
United States
Language:
English