skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Leaching behavior and possible resource recovery from air pollution control residues of fluidized bed combustion of municipal solid waste

Conference ·
OSTI ID:20006775

Ash residues are generated at several points during combustion of municipal solid waste (MSW), i.e., in cyclones, electrostatic precipitators and fabric filters. Such residues are of a complex physical and chemical nature and are often enriched in soluble salts and heavy metals such as Pb, Cd and Zn. Fluidized bed combustion (FBC) of MSW is a relatively new technique and very little information is available about the leaching behavior of its residues. In this study, the total elemental composition, mineralogy and leaching behavior of cyclone and bag-house filter ashes from a bubbling fluidized bed (BFB) boiler fired with municipal solid waste have been investigated. In addition, the possibilities of recovery heavy metals from these ashes were studied. The long-term leaching behavior of the ash constituents was evaluated using a two-step batch leaching test known as the CEN-test, whereas short and medium term leaching behavior was evaluated using a Column test. The extraction of elements from cyclone and filter ashes with various acidic solutions was also investigated. The leaching behavior of acid washed ashes was evaluated using the CEN test. The cyclone ash was mainly composed of aluminosilicate minerals, whereas the filter ash consisted of chlorides and hydroxides of alkali and alkaline earth metals. The concentration of heavy metals such as Zn, Cu, Cd and Pb was higher in the filter ash than in the cyclone ash. The leached amounts of sulfates and Pb from the cyclone ash decreased with leaching test contact time, indicating the formation of secondary mineral phases. Large amounts of chlorides, sulfates, Ca, Cu and Pb were leached from the filter ash. Acid extraction removed large amounts ({gt}50%) of Zn, Pb and Cu from the filter ash and approximately 56% of the total amount of Zn present in the cyclone ash. An efficient removal of heavy metal species from these types of ashes can probably be achieved by application of a recycling or multi-step process.

Research Organization:
Goteboerg Univ., Gothenburg (SE)
OSTI ID:
20006775
Report Number(s):
CONF-990534-; TRN: IM200008%%382
Resource Relation:
Conference: 15th International Conference on Fluidized Bed Combustion, Savannah, GA (US), 05/16/1999--05/19/1999; Other Information: 1 CD-ROM. Operating system required: Windows 3.x; Windows 95/98/NT; Macintosh, Power Macintosh; UNIX. All systems need 2X CD-ROM drive.; PBD: 1999; Related Information: In: Proceedings of the 15th national conference on fluidized bed combustion, by Reuther, R.B. [ed.], [1800] pages.
Country of Publication:
United States
Language:
English