skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sulfur capture under periodically changing oxidizing and reducing conditions in PFBC

Conference ·
OSTI ID:20006773

During in situ sulfur capture with a calcium-based sorbent in fluidized bed combustion (FBC), a temperature optimum is found, at atmospheric pressure, at {approximately}850 C. The repeated decomposition of sulfated limestone during stages where the gas atmosphere surrounding the sorbent particle is not oxidizing but reducing has been identified to explain this maximum. Under pressurized (PFBC) conditions, an additional aspect is the direct conversion of calcium carbonate (CaCO{sub 3}) without the intermediate calcium oxide (CaO) due to the partial pressure of carbon dioxide (CO{sub 2}). In this work it was evaluated how stable calcium sulfate (CaSO{sub 4}) is in a gas atmosphere that periodically changes from oxidizing to reducing and vice versa. Atmospheric as well as elevated pressures are considered. CaO or CaCO{sub 3}, and/or calcium sulfide (CaS) are formed during the reducing stage. Using a pressurized thermogravimetric reactor (PTGR) a limestone was periodically sulfated under oxidizing conditions and decomposed under reducing conditions with carbon monoxide (CO), or with CO + H{sub 2} (hydrogen). Experiments at 1 bar and 15 bar were carried out, at temperatures from 850 C to 950 C, at C O and CO + H{sub 2} concentrations up to 4%-vol. The experimental data were modeled using simple first order (parallel) reaction schemes that allowed for sorbent structure changes. This gave rate parameters for the sulfation and the decomposition reactions, and identified the decomposition products. It was found that 1 bar, CO + H{sub 2} gives a higher reduction of CaSO{sub 4} than CO, at the same total concentration. The rate of decomposition increases faster with temperature than the sulfation, explaining the sulfation efficiency maximum mentioned above. At 15 bar, a different picture is seen. The reductive decomposition rate as well as the sulfation rate are slower, with CO as well as CO with small amounts of H{sub 2} as the reducing species. There is a significant effect of the water which is present in the gas at higher concentrations than H{sub 2}. Thermodynamics indicate that this leads to the decomposition of CaS, releasing H{sub 2}S.

Research Organization:
Aabo Akademi Univ., Turku (FI)
OSTI ID:
20006773
Report Number(s):
CONF-990534-; TRN: IM200008%%380
Resource Relation:
Conference: 15th International Conference on Fluidized Bed Combustion, Savannah, GA (US), 05/16/1999--05/19/1999; Other Information: 1 CD-ROM. Operating system required: Windows 3.x; Windows 95/98/NT; Macintosh, Power Macintosh; UNIX. All systems need 2X CD-ROM drive.; PBD: 1999; Related Information: In: Proceedings of the 15th national conference on fluidized bed combustion, by Reuther, R.B. [ed.], [1800] pages.
Country of Publication:
United States
Language:
English