Thin monocrystalline silicon solar cells
One of the most effective approaches for a cost reduction of crystalline silicon solar cells is the better utilization of the crystals by cutting thinner wafers. However, such thin silicon wafer must have sufficient mechanical strength to maintain a high mechanical yield in cell and module manufacturing. The electrical performance of thin cells drops strongly with decreasing cell thickness if solar cell manufacturing technologies without a backside passivation of a back-surface-field (BSF) are applied. However, with the application of a BSF, stable efficiencies of over 17%, even with decreasing cell thickness, have been reached. Thin solar cells show lower photodegradation, as is normally observed for Cz-silicon cells with today's standard thickness (about 300 {micro}m) because of a higher ratio of the diffusion length compared to the cell thickness. Cells of about 100--150 {micro}m thickness fabricated with the production Cz-silicon show almost no photodegradation. Furthermore, thin boron BSF cells have a pronounced efficiency response under backside illumination. The backside efficiency increases with decreasing cell thickness and reaches 60% of the frontside cell efficiency for 150 {micro}m solar cells and also for solar modules assembled of 36 cells of a thickness of 150 {mu}m. Assuming, for example, a rearside illumination of 150 W/m{sub 2}, this results in an increased module power output of about 10% relatively.
- Research Organization:
- Siemens Solar GmbH, Munich (DE)
- OSTI ID:
- 20006078
- Journal Information:
- IEEE Transactions on Electron Devices (Institute of Electrical and Electronics Engineers), Journal Name: IEEE Transactions on Electron Devices (Institute of Electrical and Electronics Engineers) Journal Issue: 10 Vol. 46; ISSN 0018-9383; ISSN IETDAI
- Country of Publication:
- United States
- Language:
- English
Similar Records
Diffusion length of tri-crystalline silicon during solar cell processing
Specific PVMaT R&D on Siemens Cz Silicon Product Manufacturing: Final Subcontract Report, June 1998 - September 2001