skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Grain boundary chemistry of alumina by high-resolution imaging SIMS[Secondary Ion Mass Spectroscopy]

Journal Article · · Acta Materialia

The unique capabilities of the high-resolution scanning ion microprobe developed at the University of Chicago (UC-SIM) are described and its utility is demonstrated in a study of grain boundary chemistry of alumina ceramics. When polycrystalline alumina is doped singly with either MgO or SiO{sub 2}, strong segregation of the individual ions to grain boundaries is observed: (1) for Mg segregation C{sub gb}/C{sub grain} {approximately}400; (2) for Si segregation C{sub gb}/C{sub grain} {approximately}300. However, on codoping with both MgO and SiO{sub 2}, grain boundary segregation is significantly diminished by a factor of five or more over single doping as both cations are redistributed into the bulk alumina lattice. A defect compensation mechanism is proposed to explain this mutual solid solubility of Mg and Si in alumina. One important sequence of this chemical redistribution is a change in abnormal grain growth morphology from facetted grains in SiO{sub 2} singly doped alumina, to non-facetted grains with curved boundaries in MgO and SiO{sub 2} codoped alumina. As the Mg/Si dopant ratio exceeds the equimolar concentration, abnormal grain growth development ceases. These findings provide a physical mechanism to explain the role of MgO as a sintering aid to control microstructure evolution in alumina. Another significant consequence of SiO{sub 2} redistribution on MgO doping is an observed improvement in the corrosion resistance of alumina to aqueous HF. Siliceous grain boundary films readily corrode and compromise the intrinsically good corrosion resistance of bulk alumina. MgO doping in amounts greater than the SiO{sub 2} concentration prevents the formation of these corrodable silica-based phases leading to the development of aluminas for use in aqueous HF-containing ambients.

Research Organization:
Univ. of Chicago, IL (US)
OSTI ID:
20005380
Journal Information:
Acta Materialia, Vol. 47, Issue 15-16; Conference: Materials Science and Mechanics of Interfaces, La Jolla, CA (US), 10/25/1998--10/30/1998; Other Information: PBD: 12 Nov 1999; ISSN 1359-6454
Country of Publication:
United States
Language:
English

Similar Records

Origin and growth kinetics of platelike abnormal grains in liquid-phase-sintered alumina
Journal Article · Sun Jul 01 00:00:00 EDT 1990 · Journal of the American Ceramic Society; (USA) · OSTI ID:20005380

High-temperature strength of fluorine-doped silicon nitride
Journal Article · Sat Jan 01 00:00:00 EST 1994 · Journal of the American Ceramic Society · OSTI ID:20005380

Interface Analyses Between a Case-Hardened Ingot Casting Steel and Carbon-Containing and Carbon-Free Refractories
Journal Article · Fri Jun 15 00:00:00 EDT 2018 · Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science · OSTI ID:20005380