Grain boundary chemistry of alumina by high-resolution imaging SIMS[Secondary Ion Mass Spectroscopy]
Journal Article
·
· Acta Materialia
The unique capabilities of the high-resolution scanning ion microprobe developed at the University of Chicago (UC-SIM) are described and its utility is demonstrated in a study of grain boundary chemistry of alumina ceramics. When polycrystalline alumina is doped singly with either MgO or SiO{sub 2}, strong segregation of the individual ions to grain boundaries is observed: (1) for Mg segregation C{sub gb}/C{sub grain} {approximately}400; (2) for Si segregation C{sub gb}/C{sub grain} {approximately}300. However, on codoping with both MgO and SiO{sub 2}, grain boundary segregation is significantly diminished by a factor of five or more over single doping as both cations are redistributed into the bulk alumina lattice. A defect compensation mechanism is proposed to explain this mutual solid solubility of Mg and Si in alumina. One important sequence of this chemical redistribution is a change in abnormal grain growth morphology from facetted grains in SiO{sub 2} singly doped alumina, to non-facetted grains with curved boundaries in MgO and SiO{sub 2} codoped alumina. As the Mg/Si dopant ratio exceeds the equimolar concentration, abnormal grain growth development ceases. These findings provide a physical mechanism to explain the role of MgO as a sintering aid to control microstructure evolution in alumina. Another significant consequence of SiO{sub 2} redistribution on MgO doping is an observed improvement in the corrosion resistance of alumina to aqueous HF. Siliceous grain boundary films readily corrode and compromise the intrinsically good corrosion resistance of bulk alumina. MgO doping in amounts greater than the SiO{sub 2} concentration prevents the formation of these corrodable silica-based phases leading to the development of aluminas for use in aqueous HF-containing ambients.
- Research Organization:
- Univ. of Chicago, IL (US)
- OSTI ID:
- 20005380
- Journal Information:
- Acta Materialia, Journal Name: Acta Materialia Journal Issue: 15-16 Vol. 47; ISSN 1359-6454; ISSN ACMAFD
- Country of Publication:
- United States
- Language:
- English
Similar Records
Origin and growth kinetics of platelike abnormal grains in liquid-phase-sintered alumina
Grain boundary diffusion of oxygen in alumina ceramics
Hydrothermal corrosion of alumina ceramics
Journal Article
·
Sun Jul 01 00:00:00 EDT 1990
· Journal of the American Ceramic Society; (USA)
·
OSTI ID:6072323
Grain boundary diffusion of oxygen in alumina ceramics
Journal Article
·
Fri Sep 01 00:00:00 EDT 1995
· Journal of the American Ceramic Society
·
OSTI ID:116110
Hydrothermal corrosion of alumina ceramics
Journal Article
·
Sun Nov 30 23:00:00 EST 1997
· Journal of the American Ceramic Society
·
OSTI ID:605770