skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A TEM study of samples from acid mine drainage systems: Metal-mineral association with implications for transport

Journal Article · · Geochimica et Cosmochimica Acta

Transmission electron microscopy (TEM), with energy dispersive X-ray (EDX) analysis and energy filtered transmission electron microscopy/electron energy loss spectroscopy (EFTEM/EELS), as well as powder X-ray diffraction (XRD) and scanning electron microscopy (SEM), have been used to study bed sediments from two acid mine drainage (AMD) and scanning electron microscopy (SEM), have been used to study bed sediments from two acid mine drainage (AMD) sites in western Montana, USA. TEM and associated techniques, including sample preparation via epoxy impregnation and ultramicrotome sectioning, afford the opportunity to better interpret and understand complex water-rock interactions in these types of samples. For the sample taken from the first site (Mike Horse mine), ferrihydrite is the dominant phase, Si and Zn are the most abundant elements sorbed to ferrihydrite surfaces, and Pb is notably absent from ferrihydrite association. Three additional important metal-containing phases (gahnite, hydrohetaerolite, and plumbojarosite), that were not apparent in the powder XRD pattern because of their relatively low concentration, were identified in the TEM. The presence of these phases is important, because, for example, gahnite and plumbojarosite act as sinks for Zn and Pb, respectively. Therefore, the mobility of Pb from this part of the drainage system depends on the stability of plumbojarosite and the ability of ferrihydrite to sorb the released Pb. From thermodynamic data in the literature, the authors predict that Pb will be released by the dissolution of plumbojarosite above a pH of 4 to 5, but it will then be recaptured by ferrihydrite if the pH continues to rise to 5.5 and higher, irrespective of competition effects from other metals. Therefore, only a relatively narrow pH window exists in which Pb can escape this portion of the system as an aqueous species. For the sample taken from the other site included in this study (the Carbonate mine), jarosite and quartz are the dominant phases. Interestingly, however, the jarosites are both Pb-poor and Pb-enriched. In addition, TEM reveals the presence of microcrystalline hematite with Si, S, and P sorbed to its surfaces, a nearly pure amorphous Si, Al oxyhydroxide, and an amorphous silica phase containing minor amounts of Al, Ca, and Fe. Pb will probably be released from these mixed K-Pb jarosites above pH 4 to 5, but the Pb may be retarded by the strongly adsorbing microcrystalline hematite in this pH range. The sink for Al in this system is the amorphous Si, Al oxyhydroxide, not Al(OH){sub 3} which is typically used in AMD modeling schemes.

Research Organization:
Univ. Muenster (DE)
OSTI ID:
20003985
Journal Information:
Geochimica et Cosmochimica Acta, Vol. 63, Issue 19-20; Other Information: PBD: Oct 1999; ISSN 0016-7037
Country of Publication:
United States
Language:
English