skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemical influences on trace metal-sulfide interactions in anoxic sediments

Journal Article · · Geochimica et Cosmochimica Acta

Interactions of trace metals with sulfide in anoxic environments are important in determining their chemical form and potential toxicity to organisms. In recent years, a considerable body of observational data has accumulated that indicates very different behavior for various trace metals in sulfidic sediments. These differences in behavior cannot be entirely attributed to thermodynamic relationships, but also reflect differences in ligand exchange reaction kinetics, and redox reaction pathways. Pb, Zn, and Cd, which are generally pyritized to only a few percent of the reactive fraction, have faster water exchange reaction kinetics than Fe{sup 2+}, resulting in MeS phases precipitating prior to FeS formation and subsequent pyrite formation, whereas, Co and Ni, which have slower H{sub 2}O exchange kinetics than Fe{sup 2+}, are incorporated into pyrite. Although Hg and Cu have faster reaction kinetics than Fe{sup 2+}, both are incorporated into pyrite or leached from the pyrite fraction with nitric acid. Hg undergoes significant chloride complexation, which can retard reaction with sulfide, but can also replace Fe in FeS to form HgS, which can only be dissolved in the pyrite fraction. Cu{sup 2+} is reduced by sulfide and forms a variety of sulfides with and without Fe that can only be dissolved with nitric acid. Mn{sup 2+} does not form a MnS phase easily and is incorporated into pyrite at high iron degrees of pyritization (DOP). Oxyanions of Mo and As are first reduced by sulfide. These reduced forms may then react with sulfides resulting in incorporation into pyrite. However, the oxyanion of Cr is reduced to Cr{sup 3+}, which is kinetically inert to reaction with sulfide and, therefore, not incorporated into pyrite.

Research Organization:
Texas A and M Univ., College Station, TX (US)
OSTI ID:
20003983
Journal Information:
Geochimica et Cosmochimica Acta, Vol. 63, Issue 19-20; Other Information: PBD: Oct 1999; ISSN 0016-7037
Country of Publication:
United States
Language:
English