Thermal stability studies of Li-ion cells and components
Journal Article
·
· Journal of the Electrochemical Society
A Li-ion cell consists of a carbon-based negative electrode (NE); a porous polymer membrane separator (high density polypropylene and/or polyethylene); and positive electrode (PE) containing lithium transition metal oxides (LiMo{sub 2}, M = Co, Ni, or Mn); and a mixture of lithium salt and organic solvents provides an electrolytic medium for Li-ions to shuttle between the PE and NE. Electrodes are produced by coating slurries of active PE or NE material, polymer binder, most commonly polyvinylidene difluoride (PVDF), and small amounts of high surface area carbon onto a metallic current collectors. Thermal stability of fully charged 550 mAh prismatic Li-ion cells (Sn-doped LiCoO{sub 2}/graphitic carbon) and their components are investigated. Accelerating rate calorimetry (ARC) is used to determine the onset temperature of exothermic chemical reactions that force the cell into thermal runaway. Differential scanning calorimetry (DSC) and thermogravimetry analysis are used to determine the thermal stability of the cell's positive electrode (PE) and negative electrode (NE) materials from 35 to 400 C. The cell self-heating exothermic reactions start at 123 C, and thermal runaway occurs near 167 C. The total exothermic heat generation of the NE and PE materials are 697 and 407 J/g, respectively. Heat generations of the NE and PE materials, washed in diethyl carbonate (DEC) and dried at {approx}65 C under vacuum, are significantly lower than unwashed samples. Lithium plating increases the heat generation of the NE material at temperatures near the lithium melting point. Comparison of the heat generation profiles from DSC and ARC tests indicates that thermal runaway of this cell is close to the decomposition temperature range of the unwashed PE material. The authors conclude that the heat generation from the decomposition of PE material and reaction of that with electrolyte initiates thermal runaway in a Li-ion cell, under thermally or abusive conditions.
- Research Organization:
- Motorola Energy Systems Group, Lawrenceville, GA (US)
- OSTI ID:
- 20003174
- Journal Information:
- Journal of the Electrochemical Society, Journal Name: Journal of the Electrochemical Society Journal Issue: 9 Vol. 146; ISSN JESOAN
- Country of Publication:
- United States
- Language:
- English
Similar Records
Thermal stability of electrodes in Lithium-ion cells
Thermal characterization of Li-ion cells using calorimetric techniques
Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-of-charge
Journal Article
·
Sun Feb 06 23:00:00 EST 2000
· Journal of the Electrochemical Society
·
OSTI ID:751229
Thermal characterization of Li-ion cells using calorimetric techniques
Conference
·
Wed May 31 00:00:00 EDT 2000
·
OSTI ID:756412
Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-of-charge
Journal Article
·
Mon Jul 01 20:00:00 EDT 2019
· Journal of Power Sources
·
OSTI ID:1559489