Electrochemical methods for monitoring performance of corrosion inhibitor under multiphase flow
The corrosion inhibitor is the main tool for preventing internal corrosion in carbon steel pipelines, which are used to transport multiphase mixtures from oil production. This paper presents results of an imidazoline based inhibitor using the Electrochemical Noise (ECN) and Electrochemical Impedance Spectroscopy (EIS) techniques in a multiphase flow pipeline. ECN and EIS measurements were made simultaneously in a 101.6mm I.D., 15m long acrylic pipeline using saltwater and carbon dioxide mixtures. Full pipe flow was studied for liquid velocity of 1.25 m/s and slug flow for Froude numbers 6 and 9. Experiments were carried out at a constant pressure of 136kPa and temperature of 40 C. The ECN signals and EIS spectra of blank and inhibition tests were obtained. The ECN technique is able to monitor the inhibitor film formation continuously. The current noise fluctuation is correlated to the corrosion rate for both blank test and inhibitor test. The higher current fluctuation indicates higher corrosion rates. Different EIS spectra were obtained for blank and inhibitor studies. The simple charge transfer process was seen to occur for blank tests while charge transfer and diffusion processes were taking place under inhibitor effects.
- Research Organization:
- Ohio Univ., Athens, OH (US)
- OSTI ID:
- 20002538
- Report Number(s):
- CONF-990401--
- Country of Publication:
- United States
- Language:
- English
Similar Records
Effects of multiphase flow on corrosion inhibitor
Use of electrochemical noise to monitor multiphase flow and corrosion