Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Performance of a baghouse utilizing expanded PTFE membrane filter media at a refuse-derived fuel power plant

Conference ·
OSTI ID:20002167
Great River Energy (GRE), formerly United Power Association, operates a 1,000 TPD refuse-derived fuel (RDF) fired waste-to energy facility in Elk River, Minnesota. The plant produces approximately 32 MW (gross) from three boiler units with traveling stoker grates. Flue gas from the boilers enter a dry lime scrubber prior to an eight module, reverse air baghouse. This paper presents emissions, pressure drop, and cleaning energy data before and after installation of the expanded PTFE (ePTFE) membrane filter bags. After 24 months of operation, the average concentration of total particulate matter (dry + organic wet catch) with the original conventional fiberglass filter bags was 0.007 gr/dscf {at} 7% O{sub 2}. The average concentration of total particulate matter (dry + organic wet catch) with ePTFE membrane filter bags was reduced to 0.004 gr/dscf {at} 7% O{sub 2}. To keep from exceeding 10--12 inches w.g. of pressure drop across the baghouse at full load after 24 months of service, two reverse air fans and sonic horns in each module were used to clean the original fiberglass bags. The frequency of cleaning was continuous with 100 cleaning cycles per 24 hours. With the ePTFE membrane filter bags, a baghouse pressure drop of 7 inches w.g. was maintained after 24 months of operation at full load. In order to clean the new bags, sonic horns were used. However, one of the two reverse air fans was turned off. The cleaning frequency was reduced to 15 cycles per 24 hours. Other benefits are also discussed including energy cost savings due to reduced power consumption and increased power generation capacity.
Research Organization:
W. L. Gore and Associates, Inc., Elkton, MD (US)
OSTI ID:
20002167
Report Number(s):
CONF-990608--
Country of Publication:
United States
Language:
English