skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A computational model for predicting damage evolution in laminated composite plates

Journal Article · · Journal of Engineering Materials and Technology
DOI:https://doi.org/10.1115/1.2812399· OSTI ID:20000451

A model is developed herein for predicting the evolution of interface degradation, matrix cracking, and delamination at multiple sites in laminated continuous fiber composite plates subjected to monotonic and/or cyclic mechanical loading. Due to the complicated nature of the many cracks and their interactions, a multi-scale micro-meso-local-global methodology is deployed in order to model all damage modes. Interface degradation is first modeled analytically on the microscale, and the results are homogenized to produce a cohesive zone model that is capable of predicting interface fracture. Subsequently, matrix cracking in the plies is modeled analytically on the meso-scale, and this result is homogenized to produce ply level damage dependent constitutive equations. The evolution of delaminations is considered on the local scale, and this effect is modeled using a three dimensional finite element algorithm. Results of this analysis are homogenized to produce damage dependent laminate equations. Finally, global response of the damaged plate is modeled using a plate finite element algorithm. Evolution of all three modes of damage is predicted via interfacing all four scales into a single multi-scale algorithm that is computationally tenable for use on a desktop computer. Results obtained herein suggest that this model may be capable of accurately predicting complex damage patterns such as that observed at open holes in laminated plates.

Research Organization:
Texas A&M Univ., College Station, TX (US)
OSTI ID:
20000451
Journal Information:
Journal of Engineering Materials and Technology, Vol. 121, Issue 4; Other Information: PBD: Oct 1999; ISSN 0094-4289
Country of Publication:
United States
Language:
English