Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Black Start of Unbalanced Microgrids Harmonizing Single- and Three-Phase Grid-Forming Inverters: Preprint

Conference ·
OSTI ID:1995978
As power systems are transforming with increasing penetrations of inverter-based resources (IBRs), system restoration using IBRs has drawn attention. Using distributed grid-forming (GFM) assets located near critical loads, either three-phase or single-phase, to establish microgrid voltages in the absence of a bulk grid, a distribution system could obtain high system survivability. For swift and secure recovery of a critical load in a single-phase lateral, local single-phase GFM inverters can form a microgrid, and then it can be combined with a neighbouring grid with the inverters remaining in GFM mode for voltage and frequency regulation until the bulk grid comes online. It leads to dynamic interoperation of single-phase GFM inverters with three-phase ones in the black start process. This paper studies the novel approach with electromagnetic transient (EMT) simulations. To evaluate the potential and the technical challenges of the heterogeneous IBR-driven black start, three-phase and single-phase GFM inverter models are developed, including negative-sequence control for voltage balance and a phase-by-phase current limiter (three-phase) and current magnitude limiter (single-phase). To examine dynamic aspects of the black-start process, the EMT simulation also models transformer and motor dynamics emulating their inrush and startup behavior as well as network dynamics. Involvement of grid-following assets to facilitate the black-start process is also modeled. By allowing multiple GFM inverters to collectively black start without leader-follower coordination, regardless of phases, a system can achieve extreme resilience. An inverter-driven black start of a heavily unbalanced 2-MVA distribution feeder using 1 three-phase and 3 single-phase GFM inverters is demonstrated. The simulation shows the heterogeneous system can maintain stability with the single-phase GFM dynamics coupled with the three-phase one.
Research Organization:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
DOE Contract Number:
AC36-08GO28308; AC36-08GO28308
OSTI ID:
1995978
Report Number(s):
NREL/CP-5D00-86971; MainId:87746; UUID:97cf626d-b3f1-4670-944f-5c4f762786e4; MainAdminID:70229
Country of Publication:
United States
Language:
English