Numerical simulation of a methane-oxygen rotating detonation rocket engine
- Univ. of Michigan, Ann Arbor, MI (United States); University of Michigan, Aerospace Engineering
- Univ. of Michigan, Ann Arbor, MI (United States)
- Sierra Lobo, Inc., Edwards Air Force Base, CA (United States)
- Air Force Research Lab. (AFRL), Edwards Air Force Base, CA (United States)
The rotating detonation engine (RDE) is an important realization of pressure gain combustion for rocket applications. The RDE system is characterized by a highly unsteady flow field, with multiple reflected pressure waves following detonation and an entrainment of partially-burnt gases in the post-detonation region. While experimental efforts have provided macroscopic properties of RDE operation, limited accessibility for optical and flow-field diagnostic equipment constrain the understanding of mechanisms that lend to wave stability, controllability, and sustainability. To this end, high-fidelity numerical simulations of a methane-oxygen rotating detonation rocket engine (RDRE) with an impinging discrete injection scheme are performed to provide detailed insight into the detonation and mixing physics and anomalous behavior within the system. Two primary detonation waves reside at a standoff distance from the base of the channel, with peak detonation heat release at approximately 10 mm from the injection plane. The high plenum pressures and micro-nozzle injector geometry contribute to fairly stiff injectors that are minimally affected by the passing detonation wave. There is no large scale circulation observed in the reactant mixing region, and the fuel distribution is asymmetric with a rich mixture attached to the inner wall of the annulus. The detonation waves’ strengths spatially fluctuate, with large variations in local wave speed and flow compression. The flow field is characterized by parasitic combustion of the fresh reactant mixture as well as post-detonation deflagration of residual gases. By the exit plane of the RDRE, approximately 95.7% of the fuel has been consumed. In this work, a detailed statistical analysis of the interaction between mixing and detonation is presented. Finally, the results highlight the merit of high-fidelity numerical studies in investigating an RDRE system and the outcomes may be used to improve its performance.
- Research Organization:
- University of Michigan, Ann Arbor
- Sponsoring Organization:
- USDOE Office of Fossil Energy and Carbon Management (FECM); National Aeronautics and Space Administration (NASA)
- Grant/Contract Number:
- FE0031228; FE0025315; FE0023983
- OSTI ID:
- 1995242
- Alternate ID(s):
- OSTI ID: 1849139
OSTI ID: 1777054
- Report Number(s):
- DOE-UMICH-FE0031228-012
- Journal Information:
- Proceedings of the Combustion Institute, Journal Name: Proceedings of the Combustion Institute Journal Issue: 3 Vol. 38; ISSN 1540-7489
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Numerical Analysis of Combustion Dynamics in a Full-Scale Rotating Detonation Rocket Engine using Large Eddy Simulations
Mixing and detonation structure in a rotating detonation engine with an axial air inlet