Moment-Fourier approach to ion parallel fluid closures and transport for a toroidally confined plasma
Journal Article
·
· Plasma Physics and Controlled Fusion
- Utah State University, Logan, UT (United States); Utah State University
- Utah State University, Logan, UT (United States)
- Seoul National University (Korea, Republic of)
A general method of solving the drift kinetic equation is developed for an axisymmetric magnetic field. Expanding a distribution function in general moments, a set of ordinary differential equations is obtained. Successively expanding the moments and magnetic-field involved quantities in Fourier series, a set of linear algebraic equations is obtained. The set of full (Maxwellian and non-Maxwellian) moment equations is solved to express the first-order density, temperature, and flow velocity in terms of radial gradients of the zeroth-order pressure and temperature. Closure relations that connect parallel heat flux density and viscosity to the radial gradients and parallel gradients of temperature and flow velocity are also obtained by solving the non-Maxwellian moment equations. The closure relations combined with the linearized fluid equations reproduce the same solution obtained directly from the full moment equations. Furthermore, the method can be generalized to derive closures and transport for an electron-ion plasma and a multi-ion plasma in a general magnetic field.
- Research Organization:
- Utah State University, Logan, UT (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Fusion Energy Sciences (FES)
- Grant/Contract Number:
- FG02-04ER54746; SC0022048
- OSTI ID:
- 1991370
- Alternate ID(s):
- OSTI ID: 1992376
- Journal Information:
- Plasma Physics and Controlled Fusion, Journal Name: Plasma Physics and Controlled Fusion Journal Issue: 3 Vol. 65; ISSN 0741-3335
- Publisher:
- IOP ScienceCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Closures for Two-fluid Five-moment Equations for Magnetized Plasmas (Final Scientific Report)
Closure theory for high-collisionality multi-ion plasmas
Technical Report
·
Sun Nov 11 23:00:00 EST 2018
·
OSTI ID:1481730
Closure theory for high-collisionality multi-ion plasmas
Journal Article
·
Mon Jun 12 20:00:00 EDT 2023
· Plasma Physics and Controlled Fusion
·
OSTI ID:1991368