N-allyl epiderpride: An extremely potent SPECT radioligand for the dopamine D2 receptor
- Vanderbilt Univ., Nashville, TN (United States); and others
We have previously reported that epidepride is a potent (K{sub D} 24pM) and specific SPECT radioligand for the dopamine D2 receptor which can be used to study striatal and extrastriatal dopamine D2 receptors in man. We have synthesized and evaluated the N-allyl analogue of epiderpride (APID) as a potential SPECT radioligand for the dopamine D2 receptor. In comparison to epidepride it is even more potent at the dopamine D2 receptor, the K{sub D} for APID being 11 frontal cortical homogenate. The lipophilicity, evaluated using the log kw pH 7.5, was 2.9 versus 2.05 for epidepride. Competitive binding studies using rat striatal, hippocampal and frontal cortical homogenates showed high affinity for only dopamine D2 like cerebellar ratio of 275:1 at 320 minutes post injection-similar to that seen with epidepride, but with nearly four times higher brain uptake. Of interest was the off-rate from the dopamine D2 receptor; it was 0.0046 min{sup -1} in vitro at 25{degrees}C-corresponding to an t 1/2 of 150 minutes. Studies in rhesus monkeys show an in vivo off rate (following 2.5 mg/kg raclopride IV) of about 0.0082 min{sup -1} seen that with epidepride. SPECT studies in rhesus monkeys reveal APID is a promising SPECT radioligand that appears to be similar to epidepride, but with higher brain uptake due to its more optimal lipophilicity for entry into brain.
- OSTI ID:
- 198046
- Report Number(s):
- CONF-940605--
- Journal Information:
- Journal of Nuclear Medicine, Journal Name: Journal of Nuclear Medicine Journal Issue: Suppl.5 Vol. 35; ISSN JNMEAQ; ISSN 0161-5505
- Country of Publication:
- United States
- Language:
- English
Similar Records
Sensitivities of dopamine D1 and D2 receptor radioligands to changes in synaptic dopamine
High affinity dopamine D2 receptor radioligands. 3. [[sup 123]I] and [[sup 125]I]epidepride: In vivo studies in rhesus monkey brain and comparison with in vitro pharmacokinetics in rat brain