Hierarchical reconstruction of 3D well-connected porous media from 2D exemplars using statistics-informed neural network
Journal Article
·
· Computer Methods in Applied Mechanics and Engineering
- Swansea University (United Kingdom)
- Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
- Tongji University, Shanghai (China)
- China University of Petroleum, Qingdao (China)
The relationships between porous microstructures and transport properties are of fundamental importance in various scientific and engineering applications. Due to the intricacy, stochasticity and heterogeneity of porous media, reliable characterization and modeling of transport properties often require a complete dataset of internal microstructure samples. However, it is often an unbearable cost to acquire sufficient 3D digital microstructures by purely using microscopic imaging systems. Herein this paper presents a machine learning-based technique to hierarchically reconstruct 3D well-connected porous microstructures from one isotropic or several anisotropic low-cost 2D exemplar(s). To compactly characterize the large-scale microstructural features, a Gaussian image pyramid is built for each 2D exemplar. Local morphology patterns are collected from the Gaussian image pyramids, and then they serve as the training data to embed the 2D morphological statistics into feed-forward neural networks at multiple length levels. By using a specially-developed morphology integration scheme, the 3D morphological statistics at different levels can be inferred from the statistics-informed neural networks. Gibbs sampling is adopted to hierarchically reconstruct 3D microstructures by using multi-level 3D morphological statistics, where the large-scale, regional and local morphological patterns are statistically generated and successively added to the same 3D random field. The proposed method is tested on a series of porous media with distinct morphologies, and the statistical equivalence between the reconstructed and the real microstructures is systematically evaluated by comparing morphological descriptors and transport properties. The results demonstrate that the proposed 2D-to-3D microstructure reconstruction method is a universal and efficient approach to generating morphologically and physically realistic samples of porous media.
- Research Organization:
- Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA); Engineering and Physical Sciences Research Council (EPSRC)
- Grant/Contract Number:
- 89233218CNA000001
- OSTI ID:
- 1974987
- Report Number(s):
- LA-UR-23-24399
- Journal Information:
- Computer Methods in Applied Mechanics and Engineering, Journal Name: Computer Methods in Applied Mechanics and Engineering Vol. 410; ISSN 0045-7825
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
An Algorithm to Generate Synthetic 3D Microstructures from 2D Exemplars
Microscopic imaging of porous media with X-ray computer tomography
Journal Article
·
Tue Oct 15 00:00:00 EDT 2019
· JOM. Journal of the Minerals, Metals & Materials Society
·
OSTI ID:1617323
Microscopic imaging of porous media with X-ray computer tomography
Journal Article
·
Wed Sep 01 00:00:00 EDT 1993
· SPE Formation Evaluation (Society of Petroleum Engineers); (United States)
·
OSTI ID:5940482