The equations of state and band-gap closures for Pb Cl2 and Sn Cl2 were studied using both experimental and theoretical methods. Here we measured the volume of both materials to a maximum pressure of 70 GPa using synchrotron-based angle-dispersive powder x-ray diffraction. The lattice parameters for both compounds showed anomalous changes between 16–32 GPa, providing evidence of a phase transition from the cotunnite structure to the related Co2 Si structure, in contrast to the postcotunnite structure as previously suggested. First-principles calculations confirm this finding and predict a second phase transition to a Co2 Si-like structure between 75– 110 GPa in Pb Cl2 and 60–75 GPa in Sn Cl2. Band gaps were measured under compression to ~70 GPa for Pb Cl2 and ~66 GPa for Sn Cl2 and calculated up to 200 GPa for Pb CI2 and 120 GPa for Sn Cl2. We find an excellent agreement between our experimental and theoretical results when using the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional, which suggests that this functional could reliably be used to calculate the band gap of similar AX2 compounds. Experimental and calculated band-gap results show discontinuous decreases in the band gap corresponding to phase changes to higher-coordinated crystal structures, giving insight into the relationship between interatomic geometry and metallicity.
Smart, T. J., et al. "Equation of state, phase transitions, and band-gap closure in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Pb</mml:mi><mml:msub><mml:mi>Cl</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Sn</mml:mi><mml:msub><mml:mi>Cl</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>." Physical Review. B, vol. 107, no. 13, Apr. 2023. https://doi.org/10.1103/physrevb.107.134113
Smart, T. J., O’Bannon, E. F., Diamond, M. R., Stackhouse, S., Godwal, B. K., Williams, Q., & Jeanloz, R. (2023). Equation of state, phase transitions, and band-gap closure in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Pb</mml:mi><mml:msub><mml:mi>Cl</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Sn</mml:mi><mml:msub><mml:mi>Cl</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>. Physical Review. B, 107(13). https://doi.org/10.1103/physrevb.107.134113
Smart, T. J., O’Bannon, E. F., Diamond, M. R., et al., "Equation of state, phase transitions, and band-gap closure in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Pb</mml:mi><mml:msub><mml:mi>Cl</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Sn</mml:mi><mml:msub><mml:mi>Cl</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>," Physical Review. B 107, no. 13 (2023), https://doi.org/10.1103/physrevb.107.134113
@article{osti_1972037,
author = {Smart, T. J. and O’Bannon, E. F. and Diamond, M. R. and Stackhouse, S. and Godwal, B. K. and Williams, Q. and Jeanloz, R.},
title = {Equation of state, phase transitions, and band-gap closure in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Pb</mml:mi><mml:msub><mml:mi>Cl</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Sn</mml:mi><mml:msub><mml:mi>Cl</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>},
annote = {The equations of state and band-gap closures for Pb Cl2 and Sn Cl2 were studied using both experimental and theoretical methods. Here we measured the volume of both materials to a maximum pressure of 70 GPa using synchrotron-based angle-dispersive powder x-ray diffraction. The lattice parameters for both compounds showed anomalous changes between 16–32 GPa, providing evidence of a phase transition from the cotunnite structure to the related Co2 Si structure, in contrast to the postcotunnite structure as previously suggested. First-principles calculations confirm this finding and predict a second phase transition to a Co2 Si-like structure between 75– 110 GPa in Pb Cl2 and 60–75 GPa in Sn Cl2. Band gaps were measured under compression to ~70 GPa for Pb Cl2 and ~66 GPa for Sn Cl2 and calculated up to 200 GPa for Pb CI2 and 120 GPa for Sn Cl2. We find an excellent agreement between our experimental and theoretical results when using the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional, which suggests that this functional could reliably be used to calculate the band gap of similar AX2 compounds. Experimental and calculated band-gap results show discontinuous decreases in the band gap corresponding to phase changes to higher-coordinated crystal structures, giving insight into the relationship between interatomic geometry and metallicity.},
doi = {10.1103/physrevb.107.134113},
url = {https://www.osti.gov/biblio/1972037},
journal = {Physical Review. B},
issn = {ISSN 2469-9950},
number = {13},
volume = {107},
place = {United States},
publisher = {American Physical Society (APS)},
year = {2023},
month = {04}}
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF); USDOE Office of Science (SC), Basic Energy Sciences (BES); Natural Environment Research Council (NERC)
Hasnip, Philip J.; Refson, Keith; Probert, Matt I. J.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 372, Issue 2011https://doi.org/10.1098/rsta.2013.0270