skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Generic two-phase coexistence in a type-2 Schloegl model for autocatalysis on a square lattice: Analysis via heterogeneous master equations

Journal Article · · Physical Review. E

Schloegl's second model (also known as the quadratic contact process) on a square lattice involves spontaneous annihilation of particles at lattice sites at rate p, and their autocatalytic creation at unoccupied sites with n ≥ 2 occupied neighbors at rate kn. Here, kinetic Monte Carlo (KMC) simulation reveals that these models exhibit a nonequilibrium discontinuous phase transition with generic two-phase coexistence: the p value for equistability of coexisting populated and vacuum states, peq(S), depends on the orientation or slope, S, of a planar interface separating those phases. The vacuum state displaces the populated state for p > eq(S), and the opposite applies for p < peq(S) for 0 < S < ∞. The special “combinatorial” rate choice kn = n(n–1)/12 facilitates an appealing simplification of the exact master equations for the evolution of spatially heterogeneous states in the model, which aids analytic investigation of these equations via hierarchical truncation approximations. Truncation produces coupled sets of lattice differential equations which can describe orientation-dependent interface propagation and equistability. The pair approximation predicts that peq(max) = peq(S = 1) = 0.09645 and peq(min) = peq (S → ∞) = 0.08827, values deviating less than 15% from KMC predictions. In the pair approximation, a perfect vertical interface is stationary for all p < peq(S = ∞) = 0.08907, a value exceeding peq(S → ∞). One can regard an interface for large S → ∞ as a vertical interface decorated with isolated kinks. For p < peq(S = ∞), the kink can move in either direction along this otherwise stationary interface depending upon p, but for p = peq(min) the kink is also stationary.

Research Organization:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
Grant/Contract Number:
AC02-07CH11358
OSTI ID:
1960546
Report Number(s):
IS-J 11,008; TRN: US2313228
Journal Information:
Physical Review. E, Vol. 107, Issue 3; ISSN 2470-0045
Publisher:
American Physical Society (APS)Copyright Statement
Country of Publication:
United States
Language:
English

References (22)

A first order phase transition in the threshold <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>θ</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> contact process on random <mml:math altimg="si2.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>r</mml:mi></mml:math>-regular graphs and <mml:math altimg="si3.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>r</mml:mi></mml:math>-trees journal February 2013
Phase transitions in Schloegl's second model for autocatalysis on a Bethe lattice journal July 2021
Kinetic Phase Transitions in an Irreversible Surface-Reaction Model journal June 1986
Extended families of critical and stationary droplets for nonequilibrium phase transitions in spatially discrete bistable systems journal February 2020
Dynamics of Lattice Differential Equations journal September 1996
From atomistic lattice-gas models for surface reactions to hydrodynamic reaction-diffusion equations journal March 2002
Theory of crystal growth and interface motion in crystalline materials journal August 1960
Stability of Traveling Wavefronts for the Discrete Nagumo Equation journal July 1991
Chemical reaction models for non-equilibrium phase transitions journal April 1972
Nonequilibrium Phase Transitions in Lattice Models book January 2009
Stochastic Spatial Models journal January 1999
Schloegl's second model for autocatalysis on hypercubic lattices: Dimension dependence of generic two-phase coexistence journal April 2012
Propagation failure of traveling waves in a discrete bistable medium journal May 1998
Discontinuous non-equilibrium phase transition in a threshold Schloegl model for autocatalysis: Generic two-phase coexistence and metastability journal April 2015
Critical discontinuous phase transition in the threshold contact process journal March 2011
Discontinuous Phase Transitions in Nonlocal Schloegl Models for Autocatalysis: Loss and Reemergence of a Nonequilibrium Gibbs Phase Rule journal September 2018
Generic two-phase coexistence, relaxation kinetics, and interface propagation in the quadratic contact process: Analytic studies journal January 2008
Propagation and Its Failure in Coupled Systems of Discrete Excitable Cells journal June 1987
Quadratic Contact Process: Phase Separation with Interface-Orientation-Dependent Equistability journal February 2007
Existence of traveling wavefront solutions for the discrete Nagumo equation journal March 1992
Survival of Threshold Contact Processes journal January 1997
Statistical Mechanics of Fluid Mixtures journal May 1935