Tribocatalytically-activated formation of protective friction and wear reducing carbon coatings from alkane environment
- Univ. of North Texas, Denton, TX (United States)
- Argonne National Lab. (ANL), Lemont, IL (United States)
Minimizing the wear of the surfaces exposed to mechanical shear stresses is a critical challenge for maximizing the lifespan of rotary mechanical parts. In this study, we have discovered the anti-wear capability of a series of metal nitride-copper nanocomposite coatings tested in a liquid hydrocarbon environment. The results indicate substantial reduction of the wear in comparison to the uncoated steel substrate. Analysis of the wear tracks indicates the formation of carbon-based protective films directly at the sliding interface during the tribological tests. Raman spectroscopy mapping of the wear track suggests the amorphous carbon (a-C) nature of the formed tribofilm. Further analysis of the tribocatalytic activity of the best coating candidate, MoN-Cu, as a function of load (0.25–1 N) and temperature (25 °C and 50 °C) was performed in three alkane solutions, decane, dodecane, and hexadecane. Results indicated that elevated temperature and high contact pressure lead to different tribological characteristics of the coating tested in different environments. The elemental energy dispersive x-ray spectroscopy analysis and Raman analysis revealed formation of the amorphous carbon film that facilitates easy shearing at the contact interface thus enabling more stable friction behavior and lower wear of the tribocatalytic coating. These findings provide new insights into the tribocatalysis mechanism that enables the formation of zero-wear coatings.
- Research Organization:
- Argonne National Laboratory (ANL), Argonne, IL (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Advanced Manufacturing Office; National Science Foundation (NSF)
- Grant/Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1958758
- Journal Information:
- Scientific Reports, Journal Name: Scientific Reports Journal Issue: 1 Vol. 11; ISSN 2045-2322
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Operando tribochemical formation of onion-like-carbon leads to macroscale superlubricity
Carbon-based tribofilms from lubricating oils