skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Large passive pressure tube light water reactor with voided calandria

Journal Article · · Nuclear Technology
OSTI ID:194900
; ;  [1]
  1. Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering

A reactor concept has been developed that can survive loss-of-coolant accidents (LOCAs) without scram and without replenishing primary coolant inventory while maintaining safe temperature limits on the fuel and pressure tube. The proposed concept is a pressure tube reactor of similar design to Canada deuterium uranium reactors but differing in three key aspects. First, a solid silicon carbide-coated graphite fuel matrix is used in place of fuel pin bundles to enable the dissipation of decay heat from the fuel in the absence of primary coolant. Second, the heavy water coolant in the pressure tubes is replaced by light water, which also serves as the moderator. Finally, the calandria tank, surrounded by a graphite reflector, contains a low-pressure gas instead of heavy water moderator, and this normally voided calandria is connected to a light water heat sink. The cover gas displaces the light water from the calandria during normal operation while during a LOCA or loss of heat sink accident, it allows passive calandria flooding. Calandria flooding also provides redundant and diverse reactor shutdown. The fuel elements can operate under post-critical-heat-flux conditions even at full power without exceeding fuel design limits. The heterogeneous arrangement of the fuel and moderator ensures a negative void coefficient under all circumstances. Although light water is used as both coolant and moderator, the reactor exhibits a high degree of neutron thermalization and a large prompt neutron lifetime, similar to D{sub 2}O-moderated cores. Moreover, the extremely large neutron migration length results in a strongly coupled core with a flat thermal flux profile and inherent stability against xenon spatial oscillations.

OSTI ID:
194900
Journal Information:
Nuclear Technology, Vol. 113, Issue 2; Other Information: PBD: Feb 1996
Country of Publication:
United States
Language:
English