Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

How to select electrical end-use meters for proper measurement of DSM impact estimates

Book ·
OSTI ID:192114
Does metering actually provide higher accuracy impact estimates? The answer is sometimes yes, sometimes no. It depends on how the metered data will be used. DSM impact estimates can be achieved in a variety of ways, including engineering algorithms, modeling and statistical methods. Yet for all of these methods, impacts can be calculated as the difference in pre- and post-installation annual load shapes. Increasingly, end-use metering is being used to either adjust and calibrate a particular estimate method, or measure load shapes directly. It is therefore not surprising that metering has become synonymous with higher accuracy impact estimates. If metered data is used as a component in an estimating methodology, its relative contribution to accuracy can be analyzed through propagation of error or {open_quotes}POE{close_quotes} analysis. POE analysis is a framework which can be used to evaluate different metering options and their relative effects on cost and accuracy. If metered data is used to directly measure pre- and post-installation load shapes to calculate energy and demand impacts, then the accuracy of the whole metering process directly affects the accuracy of the impact estimate. This paper is devoted to the latter case, where the decision has been made to collect high-accuracy metered data of electrical energy and demand. The underlying assumption is that all meters can yield good results if applied within the scope of their limitations. The objective is to know the application, understand what meters are actually doing to measure and record power, and decide with confidence when a sophisticated meter is required, and when a less expensive type will suffice.
OSTI ID:
192114
Report Number(s):
CONF-940129--
Country of Publication:
United States
Language:
English