Determination of boron isotope ratios and rare earth elements by ETC-ICP-MS
- Swiss Federal Laboratories for Materials Testing and Research, Duebendorf (Switzerland)
Matrix modifiers play an important role in ETV-ICP-MS as they do in GF-AAS. In ETV-ICP-MS matrix modifiers, which are used as carriers for the analyte from the furnace to the ICP, enhance both sensitivity and reproducibility. Furthermore, matrix modifiers can be used to bring the element investigated into a specific compound with certain properties. The graphite furnace plays the role of a chemical reactor. In GF-AAS volatile elements are transformed into refractory compounds in order to prevent loss during the ashing stage of the temperature program. In ETV-ICP-MS, refractory elements can be transformed into volatile compounds with the help of matrix modifiers. Both B and the REE`s are known to form refractory compounds such as carbides and oxides which make them difficult to analyze by GF-AAS. However, halides of both B and the REE`s have boiling points below 2000{degrees}C. If these compounds are formed within the furnace the analyte elements can then be effectively transported into the ICP where they will be consequentially atomized and ionized. The technique will be applied to the determination of boron isotope ratios in a tracer study of the boron metabolism in vegetables, using NH4F as a matrix modifier, and the determination of REE`s in geological samples, with CHF{sub 3} as matrix modifier.
- OSTI ID:
- 191676
- Report Number(s):
- CONF-941098--
- Country of Publication:
- United States
- Language:
- English
Similar Records
Mechanisms of atomization of uranium in electrothermal atomizers
Actinides at the crossroads: ICP-MS or alpha spectrometry?