Subseasonal Tropical Cyclone Prediction and Modulations by MJO and ENSO in CESM2
Journal Article
·
· Journal of Geophysical Research. Atmospheres
- National Center for Atmospheric Research (NCAR), Boulder, CO (United States); National Center for Atmospheric Research
- National Center for Atmospheric Research (NCAR), Boulder, CO (United States)
- Columbia Univ., Palisades, NY (United States). Lamont-Doherty Earth Observatory
- Stony Brook Univ., NY (United States)
Subseasonal tropical cyclone (TC) reforecasts from the Community Earth System Model version 2 (CAM6) subseasonal prediction system are examined in this study. Here, we evaluate the modeled TC climatology and the probabilistic forecast skill of basin-wide TC genesis at weekly temporal resolution. Prediction skill is calculated using the Brier skill score relative to a constant annual mean climatology and to a monthly varying seasonal climatology during TC season. The model captures the observed basin-wide climatological TC seasonality and spatial distributions at weeks 1–6, but TC genesis is largely underestimated from Week 2 onward. For some basins and lead times, the predicted TC genesis is primarily controlled by the number of TC “seeds” and the mean-state climate condition. The model has good prediction skill relative to the constant climatology across all the basins and lead times, but is only skillful in the eastern Pacific, North Indian Ocean, and Southern Hemisphere at Week 1 when compared to the seasonal climatology, indicating limited skill in predicting deviations from the seasonal cycle. We find strong modulations of the predicted TC genesis at up to 3 weeks of forecast lead time by the Madden-Julian Oscillation. The interannual variability of predicted TC genesis and accumulated cyclone energy are skillfully predicted in the North Atlantic and the Northwestern Pacific, with a strong modulation by the El Nino-Southern Oscillation.
- Research Organization:
- University Corporation for Atmospheric Research (UCAR), Boulder, CO (United States)
- Sponsoring Organization:
- Korea Meteorological Administration (KMA); National Aeronautics and Space Administration (NASA); National Science Foundation (NSF); USDOE Office of Science (SC), Biological and Environmental Research (BER)
- Grant/Contract Number:
- SC0022070
- OSTI ID:
- 1908344
- Journal Information:
- Journal of Geophysical Research. Atmospheres, Journal Name: Journal of Geophysical Research. Atmospheres Journal Issue: 22 Vol. 127; ISSN 2169-897X
- Publisher:
- American Geophysical UnionCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Subseasonal to Seasonal Prediction of Wintertime Northern Hemisphere Extratropical Cyclone Activity by S2S and NMME Models
Subseasonal Earth System Prediction with CESM2
Journal Article
·
Tue Nov 26 19:00:00 EST 2019
· Journal of Geophysical Research: Atmospheres
·
OSTI ID:1802547
Subseasonal Earth System Prediction with CESM2
Journal Article
·
Tue May 31 20:00:00 EDT 2022
· Weather and Forecasting
·
OSTI ID:1869489