Time-resolved relaxation and fragmentation of polycyclic aromatic hydrocarbons investigated in the ultrafast $$\mathrm{XUV}$$-$$\mathrm{IR}$$ regime
- Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); University of Oxford (United Kingdom); Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)
- Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Christian-Albrechts University, Kiel (Germany)
- Lund University (Sweden); University of Gothenburg (Sweden)
- Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Christian-Albrechts University, Kiel (Germany); University of Hamburg (Germany)
- Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)
- University of Oxford (United Kingdom)
- European X-ray Free-Electron Laser (XFEL), Hamburg (Germany); European XFEL, Schenefeld (Germany)
- Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); University of Hamburg (Germany)
- Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
- Univ. of Hamburg (Germany); Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)
- Lund University (Sweden)
- Radboud University, Nijmegen (Netherlands); University of Amsterdam (Netherlands)
- Saint Petersburg State Universtiy, Saint Petersburg (Russia)
- Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); European XFEL, Schenefeld (Germany)
- University of Hamburg (Germany); Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)
- Kansas State University, Manhattan, KS (United States)
- Radboud University, Nijmegen (Netherlands); Vrije University, Amsterdam (Netherlands)
- Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Georg-August-University, Gottingen (Germany)
Polycyclic aromatic hydrocarbons (PAHs) play an important role in interstellar chemistry and are subject to high energy photons that can induce excitation, ionization, and fragmentation. Previous studies have demonstrated electronic relaxation of parent PAH monocations over 10–100 femtoseconds as a result of beyond-Born-Oppenheimer coupling between the electronic and nuclear dynamics. Here, we investigate three PAH molecules: fluorene, phenanthrene, and pyrene, using ultrafast XUV and IR laser pulses. Simultaneous measurements of the ion yields, ion momenta, and electron momenta as a function of laser pulse delay allow a detailed insight into the various molecular processes. We report relaxation times for the electronically excited PAH*, PAH+*and PAH2+*states, and show the time-dependent conversion between fragmentation pathways. Additionally, using recoil-frame covariance analysis between ion images, we demonstrate that the dissociation of the PAH2+ions favors reaction pathways involving two-body breakup and/or loss of neutral fragments totaling an even number of carbon atoms.
- Research Organization:
- Kansas State University, Manhattan, KS (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division (CSGB); HORIZON 2020; Max Planck Society; Federal Ministry of Education and Research ( BMBF ); Marie Skłodowska-Curie Grant; German Research Foundation (DFG); Netherlands Organization for Scientific Research (NWO); Swedish Research Council; Swedish Foundation for Strategic Research; Engineering and Physical Sciences Research Council (EPSRC); National Science Foundation (NSF); Helmholtz Initiative and Networking Fund; Deutsches Elektronen-Synchrotron DESY
- Grant/Contract Number:
- FG02-86ER13491
- OSTI ID:
- 1904604
- Journal Information:
- Nature Communications, Journal Name: Nature Communications Journal Issue: 1 Vol. 12; ISSN 2041-1723
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Time-resolving state-specific molecular dissociation with XUV broadband absorption spectroscopy
Polycyclic aromatic hydrocarbons bioaccessibility in seafood: Culinary practices effects on dietary exposure