skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mitigation of Dielectric Heating of Piezoelectric Actuators at Cryogenic Temperatures

Conference · · JACoW

The new generation of low beam intensity superconducting linacs will require high accelerating gradients for new scientific discoveries. The high accelerating gradient cavities in pulsed SRF linacs will experience large (~1000’s of Hz) detuning caused by Lorentz force detuning (LFD). The piezo actuators that will be used to compensate large LFD must operate at a nominal voltage of 120V to 150V to deliver the required stroke to the cavity. In this high voltage range, the piezo is expected to warm up drastically due to its location in an insulating vacuum environment. Overheating of the piezo will significantly decrease the longevity of the actuator. A collaboration between FNAL and Physik Instrumente (PI) developed a novel piezo actuator design that mitigates piezo overheating. The design consists of using a metal foam in contact with the piezoelectric ceramic stack for heat removal. The second solution used lithium niobite as an alternative material. A comparison of the temperature stability will be presented and discussed. This study characterizes the dielectric properties for both materials. The results obtained are in the temperature range of 10 K to 300 K.

Research Organization:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), High Energy Physics (HEP)
DOE Contract Number:
AC02-07CH11359
OSTI ID:
1898844
Report Number(s):
FERMILAB-CONF-22-833-TD; oai:inspirehep.net:2174417
Journal Information:
JACoW, Vol. SRF2021
Country of Publication:
United States
Language:
English