Computational and Experimental Study of Film-Cooling Effectiveness With and Without Downstream Vortex Generators
Journal Article
·
· Journal of Turbomachinery
- Purdue Univ., West Lafayette, IN (United States)
- National Energy Technology Lab. (NETL), Morgantown, WV (United States)
Downstream vortex generators that involve a pair of rectangular plates arranged in an open V-shape placed just downstream of each film-cooling hole were shown to create flow and vortical structures that entrain lifted film-cooling flow back to the surface and increase its lateral spreading on the surface (GT2020–14317). In this study, computations and measurements were performed to examine the flow mechanisms this vortex generator induces to improve film-cooling effectiveness of a flat plate with the cooling flow emanating from one row of inclined holes. Parameters studied include blowing ratio (BR = 0.75 and 1.0) and temperature ratio (TR = 1.07 and 1.9). Here, the computational study is based on steady Reynolds-averaged Navier–Stokes (RANS) closed by the shear-stress transport (SST) turbulence model with and without conjugate analysis. The experimental study was conducted by using a conjugate heat transfer test rig with a plenum, where cooling flow is introduced. Measurements made include velocity and temperature profiles upstream and downstream of the film-cooling holes as well as the temperature at several locations on the hot and cold sides of the film-cooled flat plate. The computational study was validated by comparing computed results with those from measurements at BR = 0.75 and 1.0 and TR = 1.9. Computational and experimental results are presented to show the effects of BR and TR on the flow structures and how those structures improve the effectiveness of film cooling with and without the downstream vortex generators and with and without conjugate heat transfer.
- Research Organization:
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
- Sponsoring Organization:
- USDOE Office of Fossil Energy (FE)
- Grant/Contract Number:
- AC02-07CH11358
- OSTI ID:
- 1893932
- Journal Information:
- Journal of Turbomachinery, Journal Name: Journal of Turbomachinery Journal Issue: 2 Vol. 145; ISSN 0889-504X
- Publisher:
- ASMECopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Effects of Downstream Vortex Generators on Film Cooling a Flat Plate Fed by Crossflow
Hybrid large-eddy simulation with adaptive downstream anisotropic eddy viscosity model
Experimental and Computational Investigation of Integrated Internal and Film Cooling Designs Incorporating a Thermal Barrier Coating
Journal Article
·
Mon Jan 15 19:00:00 EST 2024
· Journal of Turbomachinery
·
OSTI ID:2348949
Hybrid large-eddy simulation with adaptive downstream anisotropic eddy viscosity model
Journal Article
·
Tue Jun 14 20:00:00 EDT 2022
· International Journal for Numerical Methods in Fluids
·
OSTI ID:2423811
Experimental and Computational Investigation of Integrated Internal and Film Cooling Designs Incorporating a Thermal Barrier Coating
Journal Article
·
Thu Mar 03 23:00:00 EST 2022
· Journal of Turbomachinery
·
OSTI ID:1982933