Microstructural evolution and precipitation in γ-LiAlO2 during ion irradiation
- Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
- Texas A & M Univ., College Station, TX (United States)
Polycrystalline γ-LiAlO2 pellets were sequentially irradiated with 120 keV He+ and 80 keV D2+ ions to the fluences of 1 × 1017 and 2 × 1017 (He+ + D+)/cm2 at 573 K. Additional irradiation was performed to a fluence of 2 × 1017 (He+ + D+)/cm2 at 773 K. The irradiated pellets were characterized using scanning transmission electron microscopy, time-of-flight secondary ion mass spectrometry, and grazing incidence x-ray diffraction. Lattice damage, amorphization, and fractures are observed with no evidence for the formation of secondary-phase precipitates in the pellets irradiated up to an ion fluence of 2 × 1017 (He+ + D+)/cm2 at 573 K. In contrast, faceted precipitates with sizes larger than 100 nm formed in a pellet irradiated to 2 × 1017 (He+ + D+)/cm2 at 773 K. Analyses of the diffraction and composition data suggest that the precipitates have a spinel-type structure, likely a non-stoichiometric LiAl5O8 with Li depletion. This could be an intermediate phase with Li atoms at the octahedral and possibly tetrahedral sites as well. It is speculated that as the dose increases, Li loss will continue and the precipitates will approach a composition of alumina primarily in phases of α-Al2O3 and amorphized Al2O3.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- AC05-76RL01830
- OSTI ID:
- 1884574
- Alternate ID(s):
- OSTI ID: 1870726
- Report Number(s):
- PNNL-SA-170674
- Journal Information:
- Journal of Applied Physics, Journal Name: Journal of Applied Physics Journal Issue: 21 Vol. 131; ISSN 0021-8979
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Microstructural features and deuterium diffusion in lithium penta-aluminate pellets under He+ and D+ ion irradiation