The status and prospects of materials for carbon capture technologies
- Univ. of California, Riverside, CA (United States)
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
In order to combat climate change, carbon dioxide (CO2) emissions from industry, transportation, buildings, and other sources need to be captured and long-term stored. Decarbonization of these sources requires special types of materials that have high affinities for CO2. Potassium hydroxide is a benchmark aqueous sorbent that reacts with CO2 to convert it into K2CO3 and subsequently precipitated as CaCO3. Another class of carbon capture materials is solid sorbents that are usually functionalized with amines or have natural affinities for CO2. The next wave of materials for carbon capture under investigation includes activated carbon, metal–organic frameworks, zeolites, carbon nanotubes, and ionic liquids. In this issue of MRS Bulletin, some of these materials are highlighted, including solvents and sorbents, membranes, ionic liquids, and hydrides. Other materials that can capture CO2 from low concentrations of gas streams, such as air (direct air capture) are also discussed. Also covered in this issue are machine learning-based computer algorithms developed with the goal to speed up the progress of carbon capture materials development, and to design advanced materials with high CO2 capacity, improved capture and release kinetics, and improved cyclic durability.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1883786
- Journal Information:
- MRS Bulletin, Journal Name: MRS Bulletin Journal Issue: 4 Vol. 47; ISSN 0883-7694
- Publisher:
- Materials Research SocietyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Carbon Capture Beyond Amines: CO2 Sorption at Nucleophilic Oxygen Sites in Materials
Journal Article
·
Tue Nov 08 19:00:00 EST 2022
· ChemNanoMat
·
OSTI ID:1974509