Understanding the Electrochemical Performance of FeS2 Conversion Cathodes
Journal Article
·
· ACS Applied Materials and Interfaces
- Sandia National Lab. (SNL-CA), Livermore, CA (United States)
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- Univ. of California, Los Angeles, CA (United States)
Conversion cathodes represent a viable route to improve rechargeable Li+ battery energy densities, but their poor electrochemical stability and power density have impeded their practical implementation. Here, we explore the impact cell fabrication, electrolyte interaction, and current density have on the electrochemical performance of FeS2/Li cells by deconvoluting the contributions of the various conversion and intercalation reactions to the overall capacity. By varying the slurry composition and applied pressure, we determine that the capacity loss is primarily due to the large volume changes during (de)lithiation, leading to a degradation of the conductive matrix. Through the application of an external pressure, the loss is minimized by maintaining the conductive matrix. Further, we determine that polysulfide loss can be minimized by increasing the current density (>C/10), thus reducing the sulfur formation period. Analysis of the kinetics determines that the conversion reactions are rate-limiting, specifically the formation of metallic iron at rates above C/8. While focused on FeS2, our findings on the influence of pressure, electrolyte interaction, and kinetics are broadly applicable to other conversion cathode systems.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- NA0003525
- OSTI ID:
- 1883186
- Report Number(s):
- SAND2022-6490J; 706093
- Journal Information:
- ACS Applied Materials and Interfaces, Journal Name: ACS Applied Materials and Interfaces Journal Issue: 23 Vol. 14; ISSN 1944-8244
- Publisher:
- American Chemical Society (ACS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility
Journal Article
·
Tue May 30 20:00:00 EDT 2017
· Proceedings of the National Academy of Sciences of the United States of America
·
OSTI ID:1360993