Analytical modeling and simulation of electrical contact resistance for elastic rough electrode surface contact including frictional temperature rise
- Texas Tech Univ., Lubbock, TX (United States)
- Univ. of Alabama, Tuscaloosa, AL (United States)
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
An improved electrical contact resistance (ECR) model for elastic rough electrode contact is proposed, incorporating the effects of asperity interactions and temperature rise by frictional and joule heating. The analytical simulation results show that the ECR decreases steeply at the beginning of the contact between Al and Cu. However, it becomes stabilized after reaching a specific contact force. It is also found that the longer elapsed sliding contact time, the higher ECR due to the increase in electrical resistivity of electrode materials by the frictional temperature rise at the interface. The effects of surface roughness parameters on ECR are studied through the 32 full-factorial design-of-experiment analysis. Based on the two representative roughness parameters, i.e., root-mean-square (rms) roughness and asperity radius, their individual and coupled effects on the saturated ECR are examined. The saturated ECR increases with the rms roughness for a rough machined surface condition, but it is hardly affected by the asperity radius. On the other hand, the saturated ECR increases with both the rms roughness and the asperity radius under a smooth thin film surface condition.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE; USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- NA0003525
- OSTI ID:
- 1882878
- Alternate ID(s):
- OSTI ID: 1843316
- Report Number(s):
- SAND2022-0915J; 703091
- Journal Information:
- AIP Advances, Journal Name: AIP Advances Journal Issue: 2 Vol. 12; ISSN 2158-3226
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Rough surface electrical contact resistance considering scale dependent properties and quantum effects
Ice friction: The effects of surface roughness, structure, and hydrophobicity
Frictional properties of jointed welded tuff
Journal Article
·
Thu May 21 00:00:00 EDT 2015
· Journal of Applied Physics
·
OSTI ID:22410226
Ice friction: The effects of surface roughness, structure, and hydrophobicity
Journal Article
·
Wed Jul 15 00:00:00 EDT 2009
· Journal of Applied Physics
·
OSTI ID:21359334
Frictional properties of jointed welded tuff
Technical Report
·
Wed Jul 01 00:00:00 EDT 1981
·
OSTI ID:59433