How the Hydrophobic Interface between a Perfluorosulfonic Acid Polymer and Water Vapor Controls Membrane Hydration
Journal Article
·
· ACS Applied Polymer Materials
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Stable hydration in perfluorinated polyelectrolyte membranes such as Nafion is essential to maintain good ion conductivity and manage permeation, especially in vapor-fed devices where water content depends on relative humidity in a gas stream. Extensive studies in the literature have shown that Nafion hydration in water vapor is controlled by its interfacial transport resistance. Nafion forms a fluorine-rich layer at the polymer-gas interface, and it has been proposed that this layer blocks water transport due to its hydrophobicity. To develop a molecular-level description of the physics underlying transport resistance in this system, we have performed a computational reaction-diffusion kinetics study of water evaporation from Nafion. Two distinct models are examined, one mimicking the blocking function proposed in the literature and the other assuming that there is no blocking, treating instead water evaporation as a dynamic balance between uptake from the gas and desorption from the polymer surface. Simulation results are compared to time-dependent infrared data over a range of 100-0% relative humidity from the literature. Only the dynamic model successfully reproduces experimental observations. This indicates that the physical nature of interfacial transport resistance is not slow diffusion across an interfacial layer; rather, it is due to the competition between dehydration and rehydration. The simulation data provide details on the accompanying water distributions throughout the membrane and on interfacial kinetics, showing that they are characterized by strong fluctuations.
- Research Organization:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC)
- Grant/Contract Number:
- AC02-05CH11231; SC0004993
- OSTI ID:
- 1879823
- Journal Information:
- ACS Applied Polymer Materials, Journal Name: ACS Applied Polymer Materials Journal Issue: 5 Vol. 4; ISSN 2637-6105
- Publisher:
- ACS PublicationsCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Molecular-Level Investigation of Critical Gap Size between Catalyst Particles and Electrolyte in Hydrogen Proton Exchange Membrane Fuel Cells
Interfacial Water Transport Effects in Proton-Exchange Membranes
Interfacial Water-Transport Effects in Proton-Exchange Membranes
Journal Article
·
Sun Nov 30 23:00:00 EST 2008
· Fuel Cells
·
OSTI ID:1564642
Interfacial Water Transport Effects in Proton-Exchange Membranes
Journal Article
·
Thu Nov 04 00:00:00 EDT 2010
· Journal of Fuel Cell Science and Technology
·
OSTI ID:1149935
Interfacial Water-Transport Effects in Proton-Exchange Membranes
Journal Article
·
Wed Nov 18 23:00:00 EST 2009
· Journal of Fuel Cell Science and Technology
·
OSTI ID:979809