Cry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan , respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources. Therefore, we applied serial femtosecond crystallography at X-ray free electron lasers to in vivo-grown nanocrystals of these toxins. The structure of Cry11Aa was determined de novo using the single-wavelength anomalous dispersion method, which in turn enabled the determination of the Cry11Ba structure by molecular replacement. The two structures reveal a new pattern for in vivo crystallization of Cry toxins, whereby each of their three domains packs with a symmetrically identical domain, and a cleavable crystal packing motif is located within the protoxin rather than at the termini. The diversity of in vivo crystallization patterns suggests explanations for their varied levels of toxicity and rational approaches to improve these toxins for mosquito control.
Tetreau, Guillaume, et al. "De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals." Nature Communications, vol. 13, no. 1, Jul. 2022. https://doi.org/10.1038/s41467-022-31746-x
Tetreau, Guillaume, Sawaya, Michael R., De Zitter, Elke, Andreeva, Elena A., Banneville, Anne-Sophie, Schibrowsky, Natalie A., Coquelle, Nicolas, Brewster, Aaron S., Grünbein, Marie Luise, Kovacs, Gabriela Nass, Hunter, Mark S., Kloos, Marco, Sierra, Raymond G., Schiro, Giorgio, Qiao, Pei, Stricker, Myriam, Bideshi, Dennis, Young, Iris D., ... Colletier, Jacques-Philippe (2022). De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-31746-x
Tetreau, Guillaume, Sawaya, Michael R., De Zitter, Elke, et al., "De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals," Nature Communications 13, no. 1 (2022), https://doi.org/10.1038/s41467-022-31746-x
@article{osti_1878424,
author = {Tetreau, Guillaume and Sawaya, Michael R. and De Zitter, Elke and Andreeva, Elena A. and Banneville, Anne-Sophie and Schibrowsky, Natalie A. and Coquelle, Nicolas and Brewster, Aaron S. and Grünbein, Marie Luise and Kovacs, Gabriela Nass and others},
title = {De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals},
annote = {Abstract Cry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan , respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources. Therefore, we applied serial femtosecond crystallography at X-ray free electron lasers to in vivo-grown nanocrystals of these toxins. The structure of Cry11Aa was determined de novo using the single-wavelength anomalous dispersion method, which in turn enabled the determination of the Cry11Ba structure by molecular replacement. The two structures reveal a new pattern for in vivo crystallization of Cry toxins, whereby each of their three domains packs with a symmetrically identical domain, and a cleavable crystal packing motif is located within the protoxin rather than at the termini. The diversity of in vivo crystallization patterns suggests explanations for their varied levels of toxicity and rational approaches to improve these toxins for mosquito control. },
doi = {10.1038/s41467-022-31746-x},
url = {https://www.osti.gov/biblio/1878424},
journal = {Nature Communications},
issn = {ISSN 2041-1723},
number = {1},
volume = {13},
place = {United Kingdom},
publisher = {Nature Publishing Group},
year = {2022},
month = {07}}
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 633https://doi.org/10.1016/j.nima.2010.06.107