Möbius mirrors
Journal Article
·
· Classical and Quantum Gravity
- Nazarbayev University, Nur-Sultan (Kazakhstan)
- Nazarbayev University, Nur-Sultan (Kazakhstan); Univ. of California, Berkeley, CA (United States)
An accelerating boundary (mirror) acts as a horizon and black hole analog, radiating energy with some particle spectrum. In this work, we demonstrate that a Möbius transformation on the null coordinate advanced time mirror trajectory uniquely keeps invariant not only the energy flux but the particle spectrum. We clarify how the geometric entanglement entropy is also invariant. The transform allows generation of families of dynamically distinct trajectories, including $$\mathcal{PT}$$ -symmetric ones, mapping from the eternally thermal mirror to the de Sitter horizon, and different boundary motions corresponding to Kerr or Schwarzschild black holes
- Research Organization:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), High Energy Physics (HEP); Ministry of Education and Science of the Republic of Kazakhstan
- Grant/Contract Number:
- AC02-05CH11231
- OSTI ID:
- 1878326
- Journal Information:
- Classical and Quantum Gravity, Journal Name: Classical and Quantum Gravity Journal Issue: 10 Vol. 39; ISSN 0264-9381
- Publisher:
- IOP PublishingCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect
Modified Schwarzschild metric from a unitary accelerating mirror analog
Accelerating boundary analog of a Kerr black hole
Journal Article
·
Thu Dec 21 23:00:00 EST 2017
· Physical Review D
·
OSTI ID:1541149
Modified Schwarzschild metric from a unitary accelerating mirror analog
Journal Article
·
Fri Apr 02 00:00:00 EDT 2021
· New Journal of Physics
·
OSTI ID:1813375
Accelerating boundary analog of a Kerr black hole
Journal Article
·
Thu Mar 18 00:00:00 EDT 2021
· Classical and Quantum Gravity
·
OSTI ID:1836488