Sensitivity of the strength and toughness of concrete to the properties of the interfacial transition zone
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- Sandia National Lab. (SNL-CA), Livermore, CA (United States)
We report Civil infrastructure is made primarily of concrete structures or components and therefore understanding durability and fracture behavior of concrete is of utmost importance. Concrete contains an interfacial transition zone (ITZ), a porous region surrounding the aggregates, that is often considered to be the weakest region in the concrete. The ITZ is poorly characterized and property estimates for the ITZ differ considerably. In this simulation study, representative concrete mesostructures are produced by packing coarse aggregates with realistic geometries into a mortar matrix. A meshless numerical method, peridynamics, is utilized to simulate the mechanical response including fracture under uniaxial compression and tension. The sensitivity of the stiffness and fracture toughness of the samples to the ITZ properties is computed, showing strong relationships between the ITZ properties and the effective modulus and effective yield strength of the concrete. These results provides insight into the influence of the poorly characterized ITZ on the stiffness and strength of concrete. This work showcases the applicability of peridynamics to concrete systems, matching experimental strength and modulus values. Additionally, relationships between the ITZ’s mechanical properties and the overall concrete strength and stiffness are presented to enable future design decisions.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
- Grant/Contract Number:
- NA0003525
- OSTI ID:
- 1872029
- Report Number(s):
- SAND2022-6829J; 706583
- Journal Information:
- Construction and Building Materials, Journal Name: Construction and Building Materials Vol. 336; ISSN 0950-0618
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
DEM analysis of the effect of interface transition zone on dynamic splitting tensile behavior of high-strength concrete based on multi-phase model
Meso-scale modelling of compressive fracture in concrete with irregularly shaped aggregates