Physically Informed Machine Learning Prediction of Electronic Density of States
Journal Article
·
· Chemistry of Materials
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
The electronic structure of a material, such as its density of states (DOS), provides key insights into its physical and functional properties and serves as a valuable source of high-quality features for many materials screening and discovery workflows. Still, the computational cost of calculating the DOS, most commonly with density functional theory (DFT), becomes prohibitive for meeting high-fidelity or high-throughput requirements, necessitating a cheaper but sufficiently accurate surrogate. To fulfill this demand, we develop a general machine learning method based on graph neural networks for predicting the DOS purely from atomic positions, six orders of magnitude faster than DFT. This approach can effectively use large materials databases and be applied generally across the entire periodic table to materials classes of arbitrary compositional and structural diversity. We furthermore devise a highly adaptable scheme for physically informed learning which encourages the DOS prediction to favor physically reasonable solutions defined by any set of desired constraints. This functionality provides a means for ensuring that the predicted DOS is reliable enough to be used as an input to downstream materials screening workflows to predict more complex functional properties, which rely on accurate physical features.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Grant/Contract Number:
- AC05-00OR22725; AC02-05CH11231
- OSTI ID:
- 1870241
- Journal Information:
- Chemistry of Materials, Journal Name: Chemistry of Materials Journal Issue: 11 Vol. 34; ISSN 0897-4756
- Publisher:
- American Chemical Society (ACS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Machine learned features from density of states for accurate adsorption energy prediction
Accelerating Multiscale Materials Modeling with Machine Learning
Journal Article
·
Sun Jan 03 23:00:00 EST 2021
· Nature Communications
·
OSTI ID:1756263
Accelerating Multiscale Materials Modeling with Machine Learning
Technical Report
·
Thu Sep 01 00:00:00 EDT 2022
·
OSTI ID:1889336