Sensitivity and reliability of key electrochemical markers for detecting lithium plating during extreme fast charging
Journal Article
·
· Journal of Energy Storage
- Idaho National Lab. (INL), Idaho Falls, ID (United States)
Lithium plating is one of the key challenges for enabling extreme fast charging (XFC, ≤10 to 15 min charging at ≥6C) in graphite-based lithium-ion batteries. Significant R&D effort has been focused on how to mitigate Li plating. Parallel effort is also being devoted to developing methods to detect Li plating when and if it happens during fast charging. In that regard, electrochemical (EC) signature-based detection techniques are less resource intensive, more convenient, and more practical from an end-user application perspective. However, a comprehensive understanding of key plating related EC signatures for extreme fast charging is presently unavailable. In particular, there exist distinct issues of unreliability with key plating-related EC signatures—e.g., incremental capacity (dQ.dV-1), differential OCV (dOCV.dt-1), end of lithiation (EOL) rest voltage—at XFC conditions, and the underlying reasons have not been explored and identified methodically. Using a comprehensive test matrix and XFC conditions with Li/graphite half cells, this article highlights the unreliability issues associated with the EC Li plating diagnostics and explains the underlying root cause. This study finds distinct sensitivity and unreliability issues with plating related dQ.dV-1, dOCV.dt-1, and EOL rest voltage signatures with charging rates. Furthermore, the complex interaction between graphite and plated Li that happens through multiple competing mechanisms —Li stripping and chemical intercalation— at different charging rates is at the core of the sensitivity and unreliability issue.
- Research Organization:
- Idaho National Laboratory (INL), Idaho Falls, ID (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE)
- Grant/Contract Number:
- AC07-05ID14517
- OSTI ID:
- 1842943
- Alternate ID(s):
- OSTI ID: 1869353
- Report Number(s):
- INL/JOU--21-65465-Rev000
- Journal Information:
- Journal of Energy Storage, Journal Name: Journal of Energy Storage Journal Issue: - Vol. 46; ISSN 2352-152X
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Operando video microscopy of Li plating and re-intercalation on graphite anodes during fast charging
Journal Article
·
Sun Oct 17 20:00:00 EDT 2021
· Journal of Materials Chemistry. A
·
OSTI ID:1924793