Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

How Reproducible are Surface Areas Calculated from the BET Equation?

Journal Article · · Advanced Materials
 [1];  [1];  [1];  [1];  [2];  [1];  [3];  [3];  [3];  [4];  [4];  [5];  [6];  [6];  [6];  [7];  [7];  [8];  [9];  [9] more »;  [10];  [10];  [11];  [12];  [12];  [13];  [14];  [14];  [15];  [16];  [16];  [17];  [17];  [18];  [18];  [19];  [19];  [20];  [21];  [21];  [22];  [22];  [22];  [23];  [23];  [24];  [24];  [25];  [25];  [26];  [26];  [27];  [27];  [28];  [28];  [29];  [29];  [30];  [30];  [31];  [32];  [33];  [33];  [34];  [34];  [35];  [36];  [36];  [36];  [37];  [37];  [38];  [38];  [39];  [40];  [41];  [41];  [42];  [42];  [43];  [44];  [44];  [45];  [45];  [46];  [46];  [46];  [47];  [47];  [34];  [34];  [48];  [49];  [50];  [51];  [51];  [52];  [52];  [53];  [53];  [54];  [54];  [55];  [55];  [55];  [34];  [34];  [56];  [56];  [57];  [58];  [59];  [59];  [60];  [60];  [61];  [61];  [1] « less
  1. The Adsorption &, Advanced Materials Laboratory (A 2ML) Department of Chemical Engineering &, Biotechnology University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
  2. Cavendish Laboratory University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
  3. Sandia National Laboratories 7011 East Avenue Livermore CA 94550 USA
  4. cMACS Department of Microbial and Molecular Systems (M 2S) KU Leuven Leuven 3001 Belgium
  5. CEMHTI CNRS (UPR 3079) Université d'Orléans Orléans 45071 France
  6. LPACO2/GPSA Department of Chemical Engineering Federal University of Ceará Fortaleza (CE) 60455‐760 Brazil
  7. School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China
  8. Chair of Solid State and Materials Chemistry Institute of Physics University of Augsburg Universitaetsstrasse 1 86159 Augsburg Germany
  9. School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
  10. Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio TX 78249‐0698 USA
  11. Univ. Grenoble Alpes CNRS LIPhy Grenoble 38000 France
  12. Department of Chemistry and Biochemistry University of California San Diego La Jolla CA 92093 USA
  13. Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame IN 46556 USA
  14. Leverhulme Research Centre for Functional Materials Design Materials Innovation Factory and Department of Chemistry University of Liverpool Liverpool L7 3NY UK
  15. Chimie ParisTech PSL University CNRS Institut de Recherche de Chimie Paris Paris 75005 France
  16. School of Chemistry and Chemical Engineering Shanghai Jiaotong University 800 Dongchuan Road, Minhang District Shanghai 200240 China
  17. School of Chemistry The University of Sydney New South Wales 2006 Australia
  18. Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
  19. Centre for Advanced Nanomaterials and Department of Chemistry The University of Adelaide North Terrace Adelaide SA 5000 Australia
  20. Department of Inorganic Chemistry Technische Universität Dresden Bergstrasse 66 01062 Dresden Germany
  21. Institute of Physical and Theoretical Chemistry Graz University of Technology Graz 8010 Austria
  22. Department of Chemistry and International Institute of Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
  23. Department of Chemistry University of California Riverside CA 92521 USA
  24. WestCHEM, School of Chemistry University of Glasgow Glasgow G12 8QQ UK
  25. Institute for Integrated Cell‐Material Sciences Kyoto University Yoshida, Sakyo‐ku Kyoto 606‐8501 Japan
  26. KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology P.O. Box 4700 Thuwal‐Jeddah 23955‐6900 Kingdom of Saudi Arabia
  27. Department of Chemistry Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
  28. CSIRO Private Bag 33, Clayton South MDC Clayton VIC 3169 Australia, Department of Chemical Engineering Monash University Clayton VIC 3168 Australia
  29. Advanced Porous Materials Unit (APMU) IMDEA Energy Avda. Ramón de la Sagra 3 (Móstoles) Madrid E‐28935 Spain
  30. Research Initiative for Supra‐Materials Shinshu University Nagano 380‐8553 Japan
  31. Micromeritics Instrument Corporation Norcross GA 30093 USA
  32. Department of Chemical and Biological Engineering Koc University Rumelifeneri Yolu Sariyer Istanbul 34450 Turkey
  33. Institute for Integrated Cell‐Material Sciences (WPI‐iCeMS) Kyoto University Institute for Advanced Study (KUIAS) Kyoto University Yoshida Ushinomiya‐cho, Sakyo‐ku Kyoto 606‐8501 Japan
  34. School of Chemical &, Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
  35. CNRS / Aix‐Marseille Univ./Total Marseille 64018 France
  36. Max Planck Institute for Solid State Research Heisenbergstrasse 1 70569 Stuttgart Germany, Department of Chemistry University of Munich (LMU) Butenandtstrasse 5‐13 81377 Munich Germany
  37. Instituto de Ciencia Molecular (ICMol) Universitat de València Paterna València 46980 Spain
  38. Laboratorio de Nanotecnología Molecular Departamento de Química Inorgánica Universidad de Alicante Ctra. San Vicente‐Alicante s/n San Vicente del Raspeig E‐03690 Spain
  39. ICREA Pg. Lluís Companys 23 Barcelona 08010 Spain, Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and the Barcelona Institute of Science and Technology Campus UAB, Bellaterra Barcelona 08193 Spain
  40. Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and the Barcelona Institute of Science and Technology Campus UAB, Bellaterra Barcelona 08193 Spain
  41. Department of Chemical and Biological Engineering The University of Sheffield Sheffield S10 2TN UK
  42. School of Chemistry University of St Andrews North Haugh St Andrews KY16 9ST UK
  43. Departamento de Química Inorgánica Universidad de Granada Granada 18071 Spain
  44. Barrer Centre Department of Chemical Engineering Imperial College London London SW7 2AZ UK
  45. Materials Innovation Factory Department of Chemistry University of Liverpool Liverpool L7 3NY UK
  46. School of Chemistry The University of Manchester Manchester M13 9PL UK
  47. Institut des Matériaux Poreux de Paris Ecole Normale Supérieure ESPCI Paris CNRS PSL University Paris 75005 France
  48. Chemical Sciences Division National Institute of Standards and Technology Gaithersburg MD 20899‐8320 USA
  49. Department of Chemical &, Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
  50. Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
  51. MacDiarmid Institute for Advanced Materials and Nanotechnology Institute of Fundamental Sciences Massey University Palmerston North 4442 New Zealand
  52. Department of Mechanical Engineering University of Bristol Bristol BS8 1TR UK
  53. Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5‐1‐5 Kashiwanoha, Kashiwa Chiba 277‐8561 Japan
  54. Department of Chemical Engineering Delft University of Technology van der Maasweg 9 Delft 2629HZ The Netherlands
  55. Center for Molecular Modeling (CMM) Ghent University Technologiepark 46 Zwijnaarde B‐9052 Belgium
  56. BCMaterials Basque Center for Materials Applications and Nanostructures UPV/EHU Science Park Leioa 48940 Spain, IKERBASQUE Basque Foundation for Science Bilbao 48009 Spain
  57. Department of Chemistry University of California – Berkeley Kavli Energy Nanoscience Institute at UC Berkeley Berkeley CA 94720 USA, Berkeley Global Science Institute Berkeley CA 94720 USA
  58. Department of Chemistry University of California – Berkeley Kavli Energy Nanoscience Institute at UC Berkeley Berkeley CA 94720 USA
  59. Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) Yuseong‐gu Daejeon 34141 South Korea
  60. Departamento de Química Inorgánica Universidad Autónoma de Madrid Madrid 28049 Spain
  61. Department of Chemistry Texas A&,M University College Station TX 77843 USA
Abstract

Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer–Emmett–Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro‐ and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already‐measured raw adsorption isotherms were provided to sixty‐one labs, who were asked to calculate the corresponding BET areas. This round‐robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called “BET surface identification” (BETSI), expands on the well‐known Rouquerol criteria and makes an unambiguous BET area assignment possible.

Sponsoring Organization:
USDOE
Grant/Contract Number:
FG02-08ER15967; SC0010596; NA0003525
OSTI ID:
1869327
Alternate ID(s):
OSTI ID: 1869329
OSTI ID: 2205476
Journal Information:
Advanced Materials, Journal Name: Advanced Materials Journal Issue: 27 Vol. 34; ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)Copyright Statement
Country of Publication:
Germany
Language:
English

References (36)

Functional Porous Coordination Polymers journal April 2004
Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials journal October 2018
Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs journal August 2018
The volume of micropores and the Dubinin—Radushkevich equation journal April 1998
Life cycle impact assessment and interpretation of municipal solid waste management scenarios based on the midpoint and endpoint approaches journal May 2011
Zeolites surface area calculation from nitrogen adsorption data journal March 1983
Is the bet equation applicable to microporous adsorbents? book September 2007
Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future journal March 2017
How Reproducible Are Isotherm Measurements in Metal–Organic Frameworks? journal November 2017
Metal–Organic Frameworks for Separations journal September 2011
Metal–Organic Frameworks in Biomedicine journal September 2011
Metal–Organic Framework Materials as Chemical Sensors journal September 2011
Introduction to Metal–Organic Frameworks journal September 2011
Engineering Metal Organic Frameworks for Heterogeneous Catalysis journal August 2010
From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis journal October 1997
A new family of mesoporous molecular sieves prepared with liquid crystal templates journal December 1992
Adsorption of Gases in Multimolecular Layers journal February 1938
The Adsorption of Gases on Plane Surfaces of Glass, mica and Platinum. journal September 1918
Applicability of the BET Method for Determining Surface Areas of Microporous Metal−Organic Frameworks journal July 2007
Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations journal June 2011
Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? journal August 2012
Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory journal March 2015
Application of Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal–Organic Frameworks journal December 2015
Reticular Chemistry—Construction, Properties, and Precision Reactions of Frameworks journal November 2016
Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why? journal September 2014
Ordered porous materials for emerging applications journal June 2002
De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities journal September 2010
Computer-aided discovery of a metal–organic framework with superior oxygen uptake journal April 2018
Metal–organic frameworks: functional luminescent and photonic materials for sensing applications journal January 2017
Does repeat synthesis in materials chemistry obey a power law? journal December 2019
The Chemistry and Applications of Metal-Organic Frameworks journal August 2013
Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores journal January 1998
The atom, the molecule, and the covalent organic framework journal March 2017
Balancing volumetric and gravimetric uptake in highly porous materials for clean energy journal April 2020
Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) journal January 1985
Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) journal October 2015

Similar Records

Related Subjects