A Growing Freshwater Lens in the Arctic Ocean With Sustained Climate Warming Disrupts Marine Ecosystem Function
Journal Article
·
· Journal of Geophysical Research. Biogeosciences
- Univ. of California, Irvine, CA (United States). Dept. of Earth System Science; Univ. of California, Irvine, CA (United States)
- Univ. of California, Irvine, CA (United States). Dept. of Earth System Science
- National Center for Atmospheric Research (NCAR), Boulder, CO (United States). Climate and Global Dynamics Division
One of the most robust changes in the hydrological cycle predicted by Earth System Models (ESMs) during the remainder of 21st century is an increase in the difference between precipitation and evapotranspiration (P-E) in arctic and boreal regions. We explore the long-term consequences of this change for marine ecosystems in the Arctic Ocean using the Community Earth System Model forced with a business as usual scenario of future greenhouse gas concentrations. We find that by the year 2300 increases in freshwater delivery considerably reduce Arctic Ocean surface salinity, creating a freshwater lens that has far-reaching impacts on marine biogeochemistry. The expanding freshwater lens limits vertical nutrient supply into the euphotic zone by enhancing vertical stratification and accelerating surface lateral mixing with surface waters in the North Atlantic, which become increasingly nutrient depleted from weakening of the Atlantic Meridional Overturning Circulation (AMOC). The resulting increase in nutrient stress reduces marine export production in the Arctic Ocean by 53% in 2300 relative to the 1990s and triggers a shift in community composition with small phytoplankton replacing diatoms. At the same time, the seasonal timing of export production undergoes a 2-month forward shift, with the peak advancing from July to May. This suggests that the threat to food webs and higher trophic levels may intensify after the year 2100 as gains in productivity from sea ice loss saturate and freshwater impacts on nutrient stress continue to strengthen. Our analysis highlights the critical importance of changing terrestrial hydrology and land-ocean coupling as drivers of long-term biogeochemical change in the Arctic Ocean and the necessity of multi-century climate change projections.
- Research Organization:
- Univ. of California, Irvine, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC)
- Grant/Contract Number:
- SC0016539
- OSTI ID:
- 1852284
- Journal Information:
- Journal of Geophysical Research. Biogeosciences, Journal Name: Journal of Geophysical Research. Biogeosciences Journal Issue: 12 Vol. 125; ISSN 2169-8953
- Publisher:
- American Geophysical UnionCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Responses in the Subpolar North Atlantic in Two Climate Model Sensitivity Experiments with Increased Stratospheric Aerosols
Mechanisms Governing the Development of the North Atlantic Warming Hole in the CESM-LE Future Climate Simulations
Journal Article
·
Tue Oct 31 20:00:00 EDT 2023
· Journal of Climate
·
OSTI ID:2008128
Mechanisms Governing the Development of the North Atlantic Warming Hole in the CESM-LE Future Climate Simulations
Journal Article
·
Tue Jul 31 20:00:00 EDT 2018
· Journal of Climate
·
OSTI ID:1457832