We introduce a single-frame diffractive imaging method called randomized probe imaging (RPI). In RPI, a sample is illuminated by a structured probe field containing speckles smaller than the sample’s typical feature size. Quantitative amplitude and phase images are then reconstructed from the resulting far-field diffraction pattern. The experimental geometry of RPI is straightforward to implement, requires no near-field optics, and is applicable to extended samples. When the resulting data are analyzed with a complimentary algorithm, reliable reconstructions which are robust to missing data are achieved. To realize these benefits, a resolution limit associated with the numerical aperture of the probe-forming optics is imposed. RPI therefore offers an attractive modality for quantitative X-ray phase imaging when temporal resolution and reliability are critical but spatial resolution in the tens of nanometers is sufficient. We discuss the method, introduce a reconstruction algorithm, and present two proof-of-concept experiments: one using visible light, and one using soft X-rays.
@article{osti_1842361,
author = {Levitan, Abraham L. and Keskinbora, Kahraman and Sanli, Umut T. and Weigand, Markus and Comin, Riccardo},
title = {Single-frame far-field diffractive imaging with randomized illumination},
annote = {We introduce a single-frame diffractive imaging method called randomized probe imaging (RPI). In RPI, a sample is illuminated by a structured probe field containing speckles smaller than the sample’s typical feature size. Quantitative amplitude and phase images are then reconstructed from the resulting far-field diffraction pattern. The experimental geometry of RPI is straightforward to implement, requires no near-field optics, and is applicable to extended samples. When the resulting data are analyzed with a complimentary algorithm, reliable reconstructions which are robust to missing data are achieved. To realize these benefits, a resolution limit associated with the numerical aperture of the probe-forming optics is imposed. RPI therefore offers an attractive modality for quantitative X-ray phase imaging when temporal resolution and reliability are critical but spatial resolution in the tens of nanometers is sufficient. We discuss the method, introduce a reconstruction algorithm, and present two proof-of-concept experiments: one using visible light, and one using soft X-rays.},
doi = {10.1364/OE.397421},
url = {https://www.osti.gov/biblio/1842361},
journal = {Optics Express},
issn = {ISSN OPEXFF},
number = {25},
volume = {28},
place = {United States},
publisher = {Optical Society of America},
year = {2020},
month = {11}}
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 654, Issue 1https://doi.org/10.1016/j.nima.2011.05.080