Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Neumann Series in MGS-GMRES and Inner-Outer Iterations: Preprint

Conference ·
OSTI ID:1845270

A low-synchronization MGS-GMRES Krylov solver employing a truncated Neumann series for the inverse compact WY MGS correction matrix T is presented. A corollary to the backward stability result of Paige et al. [1] establishes that T = I - Lk is sufficient for convergence of GMRES when kLkp F = O("p)_p F (B), where the strictly lower triangular matrix L is defined by the inner products of Krylov vectors V T 1:k-2 vk-1. The preconditioner is the classical Ruge-Stuben AMG algorithm with compatible relaxation and inner-outer Gauss-Seidel smoother. This smoother may also be expressed as a truncated Neumann series. Drop tolerances are applied to the lower triangular matrices arising in the smoother in order to reduce the number of non-zeros and accelerate the time to solution. The number of small matrix elements are found to increase from fine to coarse levels and thus the effciency gains are greater for large problems with many levels in the V -cycle. The solver is applied to the pressure continuity equation for the incompressible Navier-Stokes equations. Unlike the inner-outer iteration, the solver convergence rate with the standard Gauss-Seidel smoother deteriorates with dropping. The solver compute time is reduced by up to 50% without a change in the convergence rate.

Research Organization:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
DOE Contract Number:
AC36-08GO28308
OSTI ID:
1845270
Report Number(s):
NREL/CP-2C00-80343; MainId:42546; UUID:71a07ec9-e769-4ee8-b69a-835567c855d4; MainAdminID:63012
Country of Publication:
United States
Language:
English

Similar Records

Iterated Gauss-Seidel GMRES
Journal Article · Mon Jul 24 00:00:00 EDT 2023 · SIAM Journal on Scientific Computing · OSTI ID:2367546

Two-Stage Gauss-Seidel Preconditioners and Smoothers for Krylov Solvers on a GPU Cluster: Preprint
Conference · Tue Feb 08 23:00:00 EST 2022 · OSTI ID:1845268

On performance of Krylov smoothing for fully-coupled AMG preconditioners for VMS resistive MHD
Program Document · Wed Nov 01 00:00:00 EDT 2017 · OSTI ID:1429689