The Influence of Pressure on Flame-Flow Characteristics of a Reacting Jet in Crossflow
- Univ. of Central Florida, Orlando, FL (United States); Embry-Riddle Aeronautical University
- Univ. of Central Florida, Orlando, FL (United States)
- Embry-Riddle Aeronautical Univ., Daytona Beach, FL (United States)
This work experimentally investigates the effects of elevated combustor pressures on the characteristics of a lean premixed reacting methane/air jet injected into a lean vitiated crossflow using a 12.7 mm axial jet. Experiments were conducted in an axially staged combustor, which implements a reacting jet in crossflow (RJIC) configuration and operates over a pressure range of 1–5 atmospheres. Simultaneous CH* chemiluminescence and particle image velocimetry (PIV) are used to study the flow field and flame behavior. The results show that the reacting jet trajectory exhibits greater penetration with elevated pressure, which is a novel finding compared to available data in the literature. However, the flame liftoff point and ignition delay time both decreased with elevated pressure, which was attributed to decreased vorticity along the flame boundary which corresponds to increased Damköhler numbers (Da). Emissions measurements confirm the NOx increase with pressure as reported in the literature for single-stage gas turbine combustors. Concurrently, emission measurements for the staged configuration show the strong NOx benefit of the RJIC system: the data prove a reduction of global outlet emission levels at elevated pressure with the axially staged configuration. Here, the axial emission reduction was attributed to the decreasing liftoff at elevated pressure levels. Hence, the research emphasizes that the flame and emission characteristics are coupled; they are not only dependent on the geometric parameters and momentum flux ratios but are also a function of pressure.
- Research Organization:
- Embry-Riddle Aeronautical Univ., Daytona Beach, FL (United States)
- Sponsoring Organization:
- USDOE Office of Fossil Energy (FE)
- Grant/Contract Number:
- FE0031227
- OSTI ID:
- 1844553
- Journal Information:
- Journal of Energy Resources Technology, Journal Name: Journal of Energy Resources Technology Journal Issue: 5 Vol. 144; ISSN 0195-0738
- Publisher:
- ASMECopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
The Effect of Pressure on NOx Entitlement and Reaction Timescales in a Premixed Axial Jet-In-Crossflow
Partial Premixing Effects on the Reacting Jet of a High-Pressure Axially Staged Combustor