Analysis of Vector Particle-In-Cell (VPIC) memory usage optimizations on cutting-edge computer architectures
Journal Article
·
· Journal of Computational Science
- Univ. of Tennessee, Knoxville, TN (United States)
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Vector Particle-In-Cell (VPIC) is one of the fastest plasma simulation codes in the world, with particle numbers ranging from one trillion on the first petascale system, Roadrunner, to ten trillion particles on the more recent Blue Waters supercomputer. As supercomputers continue to grow rapidly in size, so too does the gap between computing capability and memory capability. Current memory systems limit VPIC simulations greatly as the maximum number of particles that can be simulated directly depends on the available memory. In this study, we present a suite of VPIC memory optimizations (i.e., particle weight, half-precision, and fixed-point optimizations) that enable a significant increase in the number of particles in VPIC simulations. Here, we assess the optimizations’ impact on memory and runtime performance for a suite of cutting-edge computer architectures such has the NVIDIA V100 GPU, the IBM Power9, and the Fujitsu A64FX architectures. Our optimizations enable a 31.25% reduction in memory usage and up to 40% increase in the number of particles. This paper extends our work on developing particle storage format optimizations Tan et al.
- Research Organization:
- Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
- Sponsoring Organization:
- IBM; National Science Foundation (NSF); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
- Grant/Contract Number:
- 89233218CNA000001
- OSTI ID:
- 1844166
- Report Number(s):
- LA-UR-21-31487
- Journal Information:
- Journal of Computational Science, Journal Name: Journal of Computational Science Vol. 60; ISSN 1877-7503
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Advances in petascale kinetic plasma simulation with VPIC and Roadrunner
Studying CPU and memory utilization of applications on Fujitsu A64FX and Nvidia Grace Superchip
Journal Article
·
Wed Dec 31 23:00:00 EST 2008
·
OSTI ID:989793
Studying CPU and memory utilization of applications on Fujitsu A64FX and Nvidia Grace Superchip
Conference
·
Tue Dec 10 23:00:00 EST 2024
·
OSTI ID:2496226