Material Interactions in Severe Accidents – Benchmarking the MELCOR V2.2 Eutectics Model for a BWR-3 Mark-I Station Blackout: Part II – Uncertainty Analysis
Journal Article
·
· Nuclear Engineering and Design
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of Utah, Salt Lake City, UT (United States)
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- International Atomic Energy Agency, Vienna (Austria)
Single case comparisons between severe accident simulations can provide detailed insights into severe accident model behavior, however, they cannot offer insights into model uncertainty, sensitivity to uncertain parameters, or underlying model biases.Here in this analysis, the single case benchmark comparison of the MELCOR material interaction models for a station blackout (SBO) scenario of a boiling water reactor (BWR) using representative Fukushima Daiichi Unit 1 boundary conditions is expanded to include an uncertainty analysis. As part of this uncertainty analysis, 1200 simulations are performed for each material interaction model (2400 total), with random sampling of 14 uncertain MELCOR input parameters. Input parameters are selected for their impact on models representing core degradation processes. These include candling, fuel rod failure, debris quenching and dryout. The analysis performed here is not a traditional “best-estimate” uncertainty analysis that uses best-estimate parameters or identifies best-estimate figure of merit distributions. Instead, it is an exploratory uncertainty analysis that identifies and interrogates underlying model form biases of the two material interaction models (eutectics and interactive materials models). Uniform distributions are applied to all uncertain parameters to ensure coverage of the model parameter uncertainty space. Key findings from this study include underlying model form biases exhibited by material interaction models, and notable differences in accident progression outcomes between the material interaction models. This uncertainty study extends and confirms the conclusions from the first part of this study, which compared the impact of material interaction modeling on simulation of a short-term station blackout scenario with representative Fukushima Daiichi Unit I boundary conditions. In particular, this study confirms that the eutectics model generally exhibits accelerated degradation and failure of fuel components, the core plate, and the lower head. The eutectics model also has a tendency to exhibit a greater degree of core degradation, greater debris mass formation, and larger debris mass ejection. Finally, the eutectics model exhibits higher maximum temperatures for fuel, cladding, particulate debris, oxidic molten pool, and metallic molten pool components than the interactive materials model; interactive materials model simulations exhibit a soft “limitation” on maximum temperatures that is related to the temperature at which material relocation occurs.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- NA0003525
- OSTI ID:
- 1834127
- Report Number(s):
- SAND--2021-9601J; 700202
- Journal Information:
- Nuclear Engineering and Design, Journal Name: Nuclear Engineering and Design Vol. 383; ISSN 0029-5493
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Current knowledge on core degradation phenomena, a review
|
journal | April 1999 |
Late phase fuel degradation in the Phébus FP tests
|
journal | November 2013 |
Lessons learnt from VERCORS tests.
|
journal | September 2005 |
Degradation and oxidation of B4C control rod segments at high temperatures
|
journal | May 2010 |
Similar Records
Material Interactions in Severe Accidents – Benchmarking the MELCOR V2.2 Eutectics Model for a BWR-3 MARK-I Station Blackout: Part I – Single Case Analysis
Post-Fukushima Research and Development Strategy for MELCOR
Enhanced Ex-Vessel Analysis for Fukushima Daiichi Unit 1: Melt Spreading and Core-Concrete Interaction Analyses with MELTSPREAD & CORQUENCH
Journal Article
·
Wed Sep 01 20:00:00 EDT 2021
· Nuclear Engineering and Design
·
OSTI ID:1822227
Post-Fukushima Research and Development Strategy for MELCOR
Technical Report
·
Sun Aug 01 00:00:00 EDT 2021
·
OSTI ID:1817293
Enhanced Ex-Vessel Analysis for Fukushima Daiichi Unit 1: Melt Spreading and Core-Concrete Interaction Analyses with MELTSPREAD & CORQUENCH
Technical Report
·
Thu Jan 31 23:00:00 EST 2013
·
OSTI ID:1063828