Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
Journal Article
·
· Frontiers in Big Data
- European Organization for Nuclear Research (CERN), Geneva (Switzerland)
- European Organization for Nuclear Research (CERN), Geneva (Switzerland); Univ. of Vienna (Austria)
- Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); California Institute of Technology (CalTech), Pasadena, CA (United States)
- Univ. of California, San Diego, CA (United States)
We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event representations, anomaly score definitions, network architectures) affect the result on specific benchmark new physics models. Once a baseline is established, we discuss how to improve the anomaly detection accuracy by exploiting normalizing flow layers in the latent space of the variational autoencoder.
- Research Organization:
- Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), High Energy Physics (HEP); European Research Council (ERC)
- Grant/Contract Number:
- AC02-07CH11359; SC0021187
- OSTI ID:
- 1833285
- Report Number(s):
- FERMILAB-PUB-21-519-CMS; arXiv:2110.08508; oai:inspirehep.net:1946088
- Journal Information:
- Frontiers in Big Data, Journal Name: Frontiers in Big Data Vol. 5; ISSN 2624-909X
- Publisher:
- FrontiersCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Fast Particle-based Anomaly Detection Algorithm with Variational Autoencoder
Challenges for unsupervised anomaly detection in particle physics
Journal Article
·
Mon Nov 27 23:00:00 EST 2023
· TBD
·
OSTI ID:2282460
Challenges for unsupervised anomaly detection in particle physics
Journal Article
·
Tue Mar 08 23:00:00 EST 2022
· Journal of High Energy Physics (Online)
·
OSTI ID:1976605