skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigations of Long-Range Wakefield Effects in a TESLA-type Cryomodule at FAST

Conference · · JACoW

The preservation of low emittance of electron beams during transport in the accelerating structures of large facilities is an ongoing challenge. In the cases of the TESLA-type superconducting rf cavities currently used in the European X-ray Free-electron Laser (XFEL) and the under-construction Linac Coherent Light Source upgrade (LCLS-II), off-axis beam transport may result in emittance dilution due to transverse long-range wakefields (LRWs) and short-range wakefields (SRW)***. To investigate such effects, experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility with its unique configuration of two TESLA-type cavities after the photocathode rf gun followed by an 8-cavity cryomodule CM). We generated beam trajectory changes with the H/V125 corrector set located 4 m upstream of the cryomodule. At 125 pC/bunch, 50 bunches, 25-MeV input, and 100-MeV exit energy, we observed for the first time submacropulse position slews of up to 500 microns at locations ~3 m after the CM and a centroid oscillation at a difference frequency of 240 kHz further downstream. Both are emittance-dilution effects which we mitigated with selective upstream beam steering.

Research Organization:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), High Energy Physics (HEP)
DOE Contract Number:
AC02-07CH11359
OSTI ID:
1832785
Report Number(s):
FERMILAB-CONF-21-237-AD; oai:inspirehep.net:1915256
Journal Information:
JACoW, Vol. IPAC2021
Country of Publication:
United States
Language:
English