Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Effect of hydrogen on tensile properties of 304L stainless steel at cryogenic temperatures

Conference ·

Safe and efficient hydrogen storage and distribution are key attributes to realizing hydrogen as an alternative energy carrier. To this end, cryogenic liquid and cryo-compressed gaseous hydrogen are considered high energy density alternatives to ambient temperature gas. However, these alternatives have significant material demands to overcome extreme temperature (20 K) and pressure (700 bar) as well as hydrogen effects. Austenitic stainless steels are widely used for cryogenic pressure vessels owing to relatively high ductility even at 4 K. However, the influence of hydrogen on mechanical properties at cryogenic temperatures has rarely been studied. In this study, the tensile properties of 304L austenitic stainless steel with internal hydrogen were evaluated at 20 K, 77 K, and 113 K. Test specimens were saturated with internal hydrogen to concentration of 140 wtppm in a high pressure environment at elevated temperature, a process called thermal precharging. While lower temperature in known to increase strength properties and reduced elongation at fracture, the presence of internal hydrogen increased both strength and elongation at fracture, but reduced ductility. Magnetic evaluation of the uniformly strained region of the test specimens suggest that hydrogen mitigates the strain-induced transformation to a’-martensite. Brittle fracture features and secondary cracking indicative of hydrogen embrittlement were observed on the fracture surfaces of hydrogen-precharged specimens, which is consistent with the loss of ductility.

Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1831461
Report Number(s):
PNNL-SA-159130
Country of Publication:
United States
Language:
English

Similar Records

HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL
S&T Accomplishment Report · Thu Sep 06 00:00:00 EDT 2012 · OSTI ID:1134047

Hydrogen assisted fracture of sensitized Type 304L austenitic stainless steel
Technical Report · Mon Dec 31 23:00:00 EST 1979 · OSTI ID:5589541

Effect of microstructural and environmental variables on ductility of austenitic stainless steels
Journal Article · Fri Oct 02 00:00:00 EDT 2020 · International Journal of Hydrogen Energy · OSTI ID:1671816

Related Subjects